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Preface

The term “Embodied Artificial Intelligence” designates a rapidly growing, highly
interdisciplinary field, uniting researchers from areas as diverse as engineering,
philosophy, psychology, computer science, biology, neuroscience, biomechanics,
material science, and linguistics. What motivates these researchers to cooperate
is the common interest in intelligence, in particular the development of intelli-
gent machines. Another unifying characteristic of the field is the conviction that
intelligence must be embodied, must be conceived of in terms of physical agents
— biological or artificial — behaving in a real physical and social world. Given this
perspective, most of the work involves the design and construction of robots or
other kinds of artifacts.

The reason for the very strong transdisciplinary nature of “Embodied Ar-
tificial Intelligence” is that intelligence, especially embodied intelligence, is to
do with behavior, with real-world interaction, and because we are dealing with
physical agents there are many aspects and components involved: materials,
morphology, sensors, actuators, energy supply, control, planning, cognition, and
perhaps even consciousness. This makes the study of embodied intelligence truly
challenging but it is precisely what makes the subject area so unique and fasci-
nating.

In this book we provide a representative collection of papers written by the
leading researchers in the field who attended a seminar on “Embodied Artificial
Intelligence”, held at Schloss Dagstuhl, Germany, July 7-11, 2003. The contribu-
tions are all interdisciplinary in nature and are targeted at an interdisciplinary
audience. As far as possible, they avoid scientific jargon and do not contain
unnecessary technical detail. The authors were all asked to critically review the
state-of-the-art in their particular domain, to elaborate the basic principles, and
to describe what they consider to be research challenges for the coming years.
This gives the book also a certain tutorial flavor so that it can be used for classes
as additional reading material.

The first part of the book, “Philosophical and Conceptual Issues”, tries to
uncover the basic characteristics of “Embodied Artificial Intelligence”, and dis-
cusses a number of deep issues related to high-level cognition, abstract thinking,
and consciousness in an embodied system. How the contributions to this volume
are situated within the field is discussed in the overview article on “Embodied
Artificial Intelligence — Trends and Challenges”. The papers in the second part,
“Information, Dynamics, Morphology”, deal with one of the basic principles
of embodiment, namely the trade-offs and task distributions between morpho-
logy, materials, control (computation), and system-environment interaction, or,
in other words, with the information theoretic aspects of embodiment. This
contrasts with the more standard way of conceptualizing, embodiment, i.e., in
physical terms (inertia, forces, torques, control, energy dissipation), thereby lar-
gely ignoring the information theoretic implications. The section on “Principles



VI Preface

of Embodiment for Real-World Applications” explores how neural systems can
be embodied to enable interactions with the real world, and describes a number
of cutting-edge applications to the design of robotic arms, hands, and robots
moving in the real world. The collection of papers under the heading “Deve-
lopmental Approaches” all share the vision of mimicking, one way or another,
developmental processes of biological systems, and/or they attempt to achieve
technological solutions by imitating aspects of development typically using hu-
manoid robots. Finally, “Artificial Evolution and Self-reconfiguration” deals with
“population thinking” and discusses on the one hand automated design methods
by drawing inspiration from nature, where, in contrast to the usual evolutionary
approaches, developmental processes are taken into account; on the other hand,
principles of self-reconfiguration are discussed not only in simulation but in the
real world.

We would like to thank all of the participants of the seminar, the authors,
and the reviewers for their excellent contributions to this volume. We would
also like to express our thanks to Prof. Reinhard Wilhelm, the scientific director
of the International Conference and Research Center for Computer Science in
Schloss Dagstuhl, who suggested that we organize a workshop on “Embodied
Artificial Intelligence”, and to the organizers of this center for their continuous
and professional support of the seminar. Credit also goes to the Executive Editor
of the Springer series LNCS/LNAI, Alfred Hofmann, for his helpful comments
and support of this publication project.

May 2004 Fumiya lida
Rolf Pfeifer

Luc Steels

Yasuo Kuniyoshi
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Embodied Artificial I ntelligence:
Trendsand Challenges

Rolf Pfeifer and Fumiyalida

Artificial Intelligence Laboratory, Department of Informatics, University of Zurich

Andreasstrasse 15, CH-8050 Zurich, Switzerland
{pfeifer,iida}@fi.unizh.ch

Abstract. Thefield of Artificia Intelligence, which started roughly half a cen-
tury ago, has a turbulent history. In the 1980s there has been a major paradigm
shift towards embodiment. While embodied artificia intelligence is still highly
diverse, changing, and far from “theoretically stable”, a certain consensus about
the important issues and methods has been achieved or is rapidly emerging. In
this non-technical paper we briefly characterize the field, summarize its
achievements, and identify important issues for future research. One of the fun-
damental unresolved problems has been and still is how thinking emerges from
an embodied system. Provocatively speaking, the central issue could be cap-
tured by the question “How does walking relate to thinking?’

1 Introduction

This conference and this paper are about embodied artificial intelligence. If you
search for “embodied artificial intelligence” or “embodied cognition” on the Internet
using your favorite search engine, you will find aradically smaller number of entries
than if you search for “artificial intelligence” or “cognition”. Trying to answer this
guestion of why this might be the case, reveals a lot about the structure of this re-
search field and uncovering its organization is one of the goals of this paper.

Over the last 50 years Artificia Intelligence (Al) has changed dramatically from a
computational discipline into a highly transdisciplinary one that incorporates many
different areas. Embodied Al, because of its very nature of being about embodied
systems in the real physical and social world, must deal with many issues that are
entirely alien to a computational perspective: as we will discuss later, physical organ-
isms in the real world, whether biological or artificial, are highly complex and their
investigation requires the cooperation of many different areas. The implications of
this change in perspective are far-reaching and can hardly be overestimated. In this
paper, we will try to outline some of them.

With the fundamental paradigm shift from a computational to an embodied per-
spective, the kinds of research topics, the theoretical and engineering issues, and the
disciplines involved have undergone dramatic changes, or stated differently, the
“landscape” has been completely transformed. In the first part of the paper we try to
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2 R. Pfeifer and F. lida

characterize these changes. In the second part, we will identify the grand challenges
in the field and discuss how far researchers have come towards achieving them.
Given the enormous diversity, as discussed in the first part, this will necessarily be
abstract, somewhat selective and reflect the authors' personal opinion, but we do hope
that many people will agree with the our description of how the field is now struc-
tured. We conclude with some general comments on the future of the field and appli-
cations.

2 The*"Landscape’

The landscape of artificial intelligence has always been rugged but it has become even
more so over the last two decades. When the field started initially, roughly half a
century ago, intelligence was essentially viewed as a computational process. Research
topics included abstract problem solving and reasoning, knowledge representation,
theorem proving, formal games like chess, search techniques, and — written — natural
language, topics normal associated with higher level intelligence. It should be
mentioned however, that in the 60s there was a considerable amount of research on
robotics in artificial intelligence at MIT, SRI, and CMU. But later on the artificial
intelligence research community has not paid much attention to this line of work.

Successes of the Classical Approach

By the mid 1980s, the classical, computational or cognitivistic approach, had grown
into a large discipline with many facets and has brought forward many successes in
terms of computer and engineering applications. If you start your favorite search
engine on the Internet, you are, among many others, employing clever machine
learning algorithms. Text processing system utilizes matching algorithms, or ago-
rithms that try to infer user’s intentions from the context of what have been done
earlier. Controls for appliances using fuzzy logic, embedded systems (as they are
employed in fuel injection systems, breaking systems, air conditioners, etc.), control
systems for elevators, and trains, natural language interfaces to directory information
systems, trandlation support software, etc., are also among the successes of the classi-
cal approach. More recently, data mining systems have been developed that heavily
rely on machine learning techniques, and chess programs have been realized that beat
99.99 percent of al humans on earth, a considerable achievement indeed! The devel-
opment of these kinds of systems, although they have their origin in artificia intelli-
gence, have now become indistinguishable from applied informatics in general: they
have become a firm congtituent of any computer science department.
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Problems of the Classical Approach

However, the origina intention of artificial intelligence was not only to develop
clever agorithms, but also to understand natural forms of intelligence that have — as
argued here — more to do with the interaction with the real world. Alas, as is now
generally agreed, the classical approach has not contributed significantly to our un-
derstanding of, for example, perception, locomotion, manipulation, everyday speech
and conversation, socia interaction in general, common sense, emotion, and so on.

Classical approaches to computer vision, for example, have been successful in
factory environments, where there are constant lighting conditions, the geometry of
the situation is precisely known (i.e. the camera is always in the same place, the ob-
jects appear on the conveyer belt always in the same position), and the types of po-
tential objects are known and can therefore be modeled. However, when these condi-
tions do not hold — and in the real world, they are never given, i.e. the distance of
objects from the eyes always changes, which is one of the many consequences of
moving around, and lighting conditions and orientation also vary continuously — these
algorithms can no longer be used. Moreover, objects are often entirely or partialy
occluded, they move (e.g. cars, people), and they appear against very different and
changing backgrounds. Artificial vision systems with capacities similar to human or
animal vision, are far from being realized artificialy.

A further example where the classical approach could not provide adequate an-
swers is object manipulation. Indeed, animals and humans are enormously skilled at
manipulating objects; even very simple animals like insects are masters at manipula-
tion. Or watch a dog chew on a bone, how he controls it with his paws, mouth and
tongue: unbelievable. Although there are specialized machines for virtually any kind
of manipulation (driving a screw, picking up objects for packaging in production
lines, lifting heavy objects in construction sites), the general purpose manipulation
abilities of natural systems are to date unparalleled.

Locomotion is another case in point. Animals and humans move with an uncanny
flexibility and elegance. We can walk with a bag in one hand, an arm around a friend,
up and down the stairs, while looking around, something none of the existing robots
can do. And building arunning robot is still considered one of the great challenges.

In the classical approach, common sense has been treated at the level of “semantic
content” and has been taken to include knowledge such as “cars cannot become preg-
nant”, “objects (normally) don't fly”, “ people have biological needs’ (they get hungry
and thirsty), etc. Building systems with this type of common-sense knowledge has
been the goal of many classical natural language and problem solving systems like
CYC (e.g. Lenat et al., 1986). But there is an important additional aspect of common-
sense knowledge, which is to do with bodily sensations and feelings, and this aspect
hasits origin largely in our embodiment. Take, for example, the word “drinking” and
freely associate what comes to mind. Perhaps being thirsty, liquid, cool drink, beer,
hot sunshine, the feeling of wetness in your mouth, on the lips, and on your tongue
when you are drinking, and the feeling of thirst disappearing as you drink, etc. It is
this kind of common sense knowledge and common experience that everyone shares
and that forms the basis of robust natural language communication, and it is firmly
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grounded in our own specific embodiment. And to our knowledge, there are currently
no artificial systems, capable of dealing with this kind of knowledge in a flexible and
adaptive way.

The last point that we would like to mention here concerns speech systems. While
in restricted areas, speech systems can be used, e.g. as an interface to directory infor-
mation systems, or systems where single word commands can be used (e.g. for robot
control, or name databases for maobile phones), in most areas they have only been
used with limited success. Speech to text systems have to be tuned to the speaker’s
voice, and because of the high error rate, typically a lot of post-editing needs to be
done on the text produced by the software. This may be one of the reasons why
speech systems have not really taken off so far, even though the idea of not having to
type any more, of producing text rapidly, is highly appealing. Although some of the
systems may have a relatively impressive performance, the fact of the matter remains
that there are to date no general purpose natural language systems whose performance
even remotely resembles the one of humans in afree format everyday conversation.

Finaly, it is interesting to note, It is interesting to note that these more natural
kinds of activities (perception, manipulation, speech) are al activities that have, in
some very essential ways, to do with complex, “high bandwidth” interaction with the
real world. We will come back to this point later on.

Embodied Artificial Intelligence

These failures, largely due to the lack of rich system-environment interaction, have
lead some researchers to pursue a different avenue, the one of embodiment. With this
change of orientation, the nature of the research questions also began to change. Rod-
ney Brooks, one of the first promoters of embodied intelligence (e.g. Brooks, 1991),
started studying insect-like locomotion, building, for example, the six-legged walking
robot “Ghengis’. So, walking and locomotion in general became important research
areas, topics typically associated with low-level sensory-motor intelligence. This is,
of course, a fundamental change from studying chess, theorem proving, and abstract
problem solving, and it is far from obvious how the two relate to one another, an
issue that we will elaborate in detail later. Other subjects that people started investi-
gating have been orientation behavior (i.e. finding one’'s way in only partially known
and changing environments), path-finding, and elementary behaviors such as wall
following, and obstacle avoidance.

The perspective of embodiment requires working with real world physical systems,
i.e. robots. A crucial aspect of embodiment is that it requires working with real world
physical systems, i.e. robots. Computers and robots are an entirely different ball
game: computers are neat and clean, they have clearly defined inputs and outputs, and
anybody can use them, can program them, and can perform simulations. Computers
also have for the better part only very limited types of interaction with the outside
world: input is via keyboard or mouse click, and output is via display panel. In other
words, the “bandwidth” of communication with the environment is extremely low.
Also computers follow clearly defined “input processing” output scheme that has, by
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the way, shaped the we think about intelligent systems and has become the guiding
metaphor of the classical cognitivistic approach. Robots, by contrast, have a much
wider sensory-motor repertoire that enables a tight coupling with the outside world
and the computer metaphor of input-processing-output can no longer be directly ap-
plied.

Building robots requires engineering expertise, which is typically not present in
computer science laboratories, let alone psychology departments. So, with the advent
of embodiment the nature of the field, artificial intelligence, changed dramatically.
While in the traditional approach, because of the interest in high-level intelligence,
the relation to psychology, in particular cognitive psychology was very prominent,
the attention, at least in the early days of the approach of embodied intelligence,
shifted more towards — non-human — biological systems, such as insects, but other
kinds of animals as well.

Also, at this point, the meaning of the term “artificial intelligence” started to
change, or rather started to adopt two meanings. One meaning stands for GOFAI
(Good Old-Fashioned Artificia Intelligence), the traditional algorithmic approach.
The other one designates the embodied approach, a paradigm that employs the syn-
thetic methodology which has three goals. (1) understanding biological systems, (2)
abstracting general principles of intelligent behavior, and (3) the application of this
knowledge to build artificial systems such as robots or intelligent devices in general.
As aresult, the modern, embodied approach started to move out of computer science
laboratories more into robotics and engineering or biology labs.

It is also of interest to look at the role of neuroscience in this context. In the 1970s
and early 1980s, asresearchersin artificial intelligence started to realize the problems
with the traditional symbol processing approach, the field of artificial neural net-
works, an area that had been around since the 1950s, started to take off — new hope
for Al researchers who had been struggling with the fundamental problems of the
symbol processing paradigm. Inspiration was drawn from the brain, but only at avery
abstract level. In the embodied approach, there was a renewed and much stronger
interest in neuroscience because researchers realized that natural neural systems are
extremely robust and efficient at controlling the interaction with the real world. As
mentioned above, animals can move and manipulate objects with great ease, and they
are controlled by — natural — neural networks. In addition, they can move very ele-
gantly, with great speed and with little energy consumption. These impressive kinds
of behaviors can only be achieved if the dynamical properties of the neural networks
are exploited. This is quite in contrast to the traditional Al approach where mostly
static feedforward networks were employed.

Diversification

So, in terms of research disciplines participating in the Al adventure, we see that in
the classical approach it was mainly computer science, psychology, philosophy, and
linguistics, whereas in the embodied approach, it is computer science and philosophy
as before, but also engineering, robotics, biology, and neuroscience (with a focus on
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dynamics), whereas psychology and linguistics have lost their role as core disciplines.
So we see somewhat of a shift from high-level (psychology, linguistics) to more low-
level sensory-motor processes, with the neurosciences covering both aspects, sensory-
motor and cognitive levels. With this shift, the terms used for describing the research
area shifted: researchers working in the embodied approach no longer referred to
themselves as working in artificial intelligence but more in robotics, engineering of
adaptive systems, artificial life, adaptive locomotion, bio-inspired systems, and neu-
roinformatics. But more than that, not only have researchers in artificia intelligence
moved into neighboring fields, but researchers that have their origins in these other
fields started in natural ways to contribute to artificial intelligence. This way, the field
on the one hand significantly expanded, but on the other, its boundaries became even
more fuzzy and ill-defined than before.

These considerations also provide a partial answer to the question of why we don’t
get many entries when we type “embodied intelligence” or “embodied artificial intel-
ligence” into one of the search engines. Because the communities started to split and
researchersin embodied intelligence started attending other kinds of conferences, e.g.
“Intelligent Autonomous Systems, 1AS’, “Simulation of Adaptive Behavior — From
Animals to Animats, SAB”, “International Conference on Intelligent Robotics and
Systems, IROS” , “Adaptive Mation in Animals and Machines, AMAM”, “European
Conference on Artificial Life, ECAL”, “Artificial Life Conference, ALIFE", “Artifi-
cia Life and Robotics, AROB”, “Evolutionary Robotics, ER”, or the various |[EEE
conferences (International Society of Electrical & Electronics Engineering), etc. An-
ecdotally speaking, | (Rolf Pfeifer) remember that initially, in the early 90s, when |
tried to convince people at Al conferences such as International Joint Conference on
Artificial Intelligence (IJCAI), the European Conference on Artificial Intelligence,
ECAI, or the German annual Al Conference, that embodiment is not only interesting
but essential to understanding intelligence, | mostly got very negative reactions and
no real discussion was possible. So, together with many colleagues we turned to other
conferences where people were more receptive to these new ideas. More recently,
perhaps because of the stagnation in the field of classical Al in terms of tackling the
big problems about the nature of intelligence, there has been a growing interest in
embodiment and now Al conferences, at least some of them, have started workshops
on issuesin embodiment. But by and large, the two communities, the classical and the
embodied one, are pretty much separate, and will probably remain so for awhile.

Biorobotics

There are a number of additional interesting developments worth mentioning here.
Oneis, in thefield of embodiment, arenewed interest in high-level cognition. Rodney
Brooks, at the time, had forcefully argued that getting insects to walk from scratch
took evolution much longer than getting from insects to humans. This implies that
creating insects was the really hard problem and after that, moving towards human
level intelligence was relatively easy. Thus, so his conclusion, one should first work
on insects rather than humans, one should do “biorobotics’.
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Many people started doing biorobotics and began cooperations with biology |abo-
ratories. An excellent example is the work by Dimitrios Lambrinos at the Artificial
Intelligence Laboratory in Zurich, who started to cooperate with the world champion
in ant navigation, Ruediger Wehner of the University of Zurich. Jointly, they built a
series of robots, the Sahabot-Series that mimic long- and short-term navigation be-
havior of the desert ant Cataglyphis (e.g. Lambrinos et a., 2000). Rodney Brooks
cooperated with the famous biologist Holk Cruse of the University of Bielefeld in
Germany, who had been studying insect walking for many years and who had found
that there is no central control for leg coordination in walking in ants. Brooks imple-
mented Cruse’'s ideas on an MIT ant-like robot and termed the controller “cru(i)se”
control, in honor of the designer, Holk Cruse. There are many examples of such co-
operation which have all been very productive (for an excellent collection of papers
on biorobotics, see (Webb and Consi, 2000) ).

Developmental Robotics

However, after a few years of working on insect like behavior, Brooks started
changing research topics. He argued that we have to “think big” and should work
towards human level intelligence, and the project “Cog” for the development of a
humanoid robot, was born (Brooks and Stein, 1993). He neatly mapped out the neces-
sary steps and stages for achieving human-level intelligence, but due to many prob-
lems, after less than 10 years, changed topics again. But the Cog project generated a
lot of excitement and many researchers were attracted by the idea of moving towards
human-level intelligence, which had also been the target of classical artificial intelli-
gence, and the field of developmental robotics emerged. The term developmental
robotics designates the attempt to model aspects of human or primate development
using real robots. Its pertinent conferences come under many labels, “Emergence and
Development of Embodied Cognition, EDEC”, “Epigenetic robotics’, “Development
of Embodied Cognition, DECO”, “International Conference on Development and
Learning”, etc. This was, of course, a happy turn for those who might have been
dlightly sad or disappointed by the direction the field took — insects smply are not as
sexy as humans! And human intelligence happens to be the most fascinating type of
intelligence that we know. But once again, this strand of conferences is separate from
the traditional ones in artificial intelligence, and they do not contain the term “em-
bodied intelligence”.

Ubiquitous Computing

Another line of development that should be introduced here is the one of ubiquitous
computing (Weiser 1993). Computer science has undergone dramatic changes as
well. Computing as such, software engineering, the development of algorithms, oper-
ating systems, the virtual machine, etc. are topics that we now understand relatively
well and it is not clear whether there will be big innovations in these areas in the near
future. Rather, it seems that the new challenges are seen in the interaction with the
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real world. Initialy, the field was characterized by the idea of putting sensors every-
where, into rooms (mostly cameras, motion detectors), floors (e.g. pressure sensors to
detect the position of individuals) objects such as cars, chairs, beds, but also cups, or
any kind of devices such as mobile telephones, clothes (e.g. t-shirts, shoes) to meas-
ure physiological data of the individual wearing them for sports or medical reasons
(thelist isin fact endless). More recently, ubiquitous computing has also been inves-
tigating actuation, i.e. ways in which systems can influence their environments: con-
trol systems for buildings for temperature, humidity, windows, and blinds; cars that
automatically apply their breaks when the distance to the car in front gets too small,
or —in the medical domain — systems that monitor physiological variables (pulse rate,
skin resistance, level of dehydration) and send a message to a physician if necessary.
The field of ubiquitous computing is closely related to user interfaces or generally to
human-machine interaction.

Even though user interfaces have always been an important topic in computers, the
problem, in contrast to robotics, has been the low “bandwidth of communication”, as
pointed out earlier. In order to increase this “bandwidth”, there has been alot of work
on speech, spoken language, to interact with computers, but these efforts, for various
reasons, have only been met with very limited success (see our discussion above).
Just recently have there been projects for developing more interesting and richer
interfaces using, for example, touch, and to some extent vision. There is also work on
smell but that has — although very exciting — not yet advanced significantly. The re-
search on wearables should be pointed out here as well. What is interesting about
these “movements’, human-machine interface, wearables, ubiquitous computing, is
that now virtually all computer science departments start moving into the real world.
They are not doing robotics per se, but many have started hiring engineers and estab-
lishing mechanical and electronics workshops where they can build hardware, be-
cause now real-world devices with certain sensory-motor abilities need to be con-
structed, devices that could be called “robotic devices’. So far as we can tell, there
has been little theory development, but thereis alot of creative experimentation going
on. We feel that the set of design principles that we have developed for embodied
systems will be extremely useful in designing such systems (e.g. Pfeifer and Scheler,
1999). For example, the principle of sensory-motor coordination which states that
through the — active — interaction with the environment, patterns of sensory stimula-
tion are induced that are correlated across sensory modalities, is an important guiding
principle, but has, to date, not been applied. We might also say that computer science
has now come full circle, from disembodied algorithm to embodied real-world com-
puting, or rather real-world interaction, with embodied artificia intelligence as the
fore-runner.

Artificial Lifeand Multi-agent Systems
Another interesting line of development has its origins in the field of Artificial Life,

also called Alife for short. The classical perspective of artificia intelligence had a
strong focus on the individual, just as psychology, and psychology was the major
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discipline with which artificial intelligence researchers cooperated at the time. ALife
research which has strong roots in biology — rather than psychology — has been fo-
cusing on emergence of behavior in large populations of agents, in other words it is
interested in what some call multi-agent systems. We deliberately say “that some call
multi-agent systems’ because normally, in Alife research, the term complex dynami-
cal system is preferred, as it encompasses also physical systems where the individual
components only have limited “agent character”, e.g. the molecules in the famous
Bénard experiment. An agent typically has certain sensory-motor abilities, i.e. it can
perceive aspects of the environment, and depending on this information and its own
state, performs a particular behavior. Molecules, rocks, or other “dead” physical ob-
jects do not have this ability. One point of interest has been the emergence of com-
plex global behavior from simple rules and local interactions. (Langton, 1995)

Modular robotics, aresearch area that has drawn inspiration from artificia life re-
search, also relates to multi-agent systems, where the individual agents are robotic
modules capable of configuring into different morphologies (see the volume by Hara
and Pfeifer (2003) for examples of modular robotic systems). One of the goals of this
research is to design systems capable of self-repair, a property that al living systems
have to some extent. Self-assembly and self-reconfiguration are fascinating topics that
will become increasingly important as systems have to operate over extended periods
of time in remote, hostile environments. The seminal work by Murata and his co-
workers (Murata et al., 2004) demonstrates, how self-reconfiguration can be achieved
not only in simulation but with real robotic systems. It should be mentioned, however,
that to date, much of the research on self-repair and self-reconfiguration is tightly
controlled, rather than being emergent from local interactions.

Evolutionary systems are another example of “population thinking”, where the
adaptivity of entire populations is studied rather than that of individuals. Because of
its close relation to biology, economics has also taken inspiration from multi-agent
systems and created the discipline of agent-based economics (e.g. Epstein and Axtell,
1996). Work on self-organization in insect societies, for example, by Jean-Louis
Deneubourg of the Université libre de Bruxelles, has attracted many researchers from
different fields: “ant intelligence” was one of their slogans (e.g. Bonabeau et al.,
1999).

Interestingly, the term multi-agent systems has quickly been adopted by research-
ers in classica artificial intelligence. However, rather than looking for emergence,
they endowed their individual agents with the same types of centralized control that
they used for individuals (e.g. Ferber, 1999). As a consequence they could not study
emergent phenomena, and a look into the journal “Autonomous Agents and Multi-
Agent Systems’ shows that the research under the heading “multi-agent systems’
typically has different goals and does not focus on emergence. For the better part, the
research is geared towards internet applications using software agents.

In robotics there has also been an interest in multi-agent systems. There the prob-
lem has been that often only relatively few robots have been available so that it has
proved difficult to investigate emergence phenomena in populations. This is illus-
trated by the rapidly growing “Robocup” or robot soccer community. Initialy the
robots, for the better part, were programmed directly by the designersin order to win
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the game. More recently there has been growing interest and significant results in
producing scientifically compelling and elegant solutions by incorporating ideas of
emergence, but this still remains a big challenge.

One of the important research problems and limitations so far has been the
achievement of higher levels of intelligence by the multi-agent community: typicaly,
asin thework of ethologist and Alife researcher Charlotte Hemelrijk, the interest isin
emergent hierarchies, group size formation, or migration patterns. Thinking, reason-
ing, or language, have typically not been topics of interest here. An exception is the
work of the group of researchers interested in evolution of communication and evo-
lution of language. An excellent example of this type of research that tries to combine
population thinking or multi-agent systems with higher-level processes such as lan-
guage is the “Talking Heads’ experiment by Luc Steels (e.g. Steels, 2001, 2003). In
an ingenious experiment he could demonstrate how, for example, a common vocabu-
lary emerges through interaction of agents with their environment and with other
agents via alanguage game. He has also been working on emergence of syntax, but in
these experiments many assumptions have to be made to bootstrap the process. In this
research strand, many insights have been gained into how communication systems
establish themselves and how something like grammar could emerge. Although fasci-
nating and highly promising, the jury is still out on whether this approach will indeed
lead to something resembling human natural language.

Because of the fundamental differencesin goals, the distributed agents community
artificial life style, and the artificial intelligence and robotics community, individual
style, have to date remained largely separate.

Summary

In summary, we can see that the landscape has changed significantly: while originally
artificial intelligence was clearly a computational discipline, dominated by computer
science, cognitive psychology, linguistics, and philosophy, it has turned into a multi-
disciplinary field requiring the cooperation and talents of many other fields such as
biology, neuroscience, engineering (electronic and mechanical), robotics, biome-
chanics, material sciences, and dynamical systems. And this exciting new transdisci-
plinary community is now called “embodied artificial intelligence.” While for some
time, psychology and linguistics have not been at center stage, with the rise of devel-
opmental robotics, there has been renewed interest in these disciplines. The ultimate
quest to understand and build systems capable of high-level thinking and natural
language, and ultimately consciousness, has remained unchanged. Only the path on
how to get there is fundamentally different. Although the emergence of ideas of em-
bodiment can be traced back to pre-Socratic thinking and can be found throughout the
history of philosophy, the recent developments in artificial intelligence that enable not
only the analysis but also the construction of embodied systems, are supplying ample
novel intellectual fodder for philosophers. As we will show later, these developments
significantly change the image we have of ourselves and our society.
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In spite of the multifaceted nature, there is a unifying principle and that is the ac-
tual agent to be designed in the context of the synthetic methodology, be it physical in
the real world, or smulated in a realistic physics-based simulation. Such agents have
a highly integrating function by bringing together results from all these different
areas, and allowing concrete testing in an objective way. Moreover, they serve as
excellent platforms for transdisciplinary research and communication.

3 State-of-the-Art and Challenges

Given the diversity of embodied artificial intelligence and the ruggedness of the land-
scape it will be next to impossible to come up with a set of challenges and a charac-
terization of the state-of-the-art that everybody will agree on.

In characterizing the state-of-the-art we will start from the overall challenges that
we will organize according to the three time scales (“here and now”, ontogenetic,
phylogenetic) (see Table 1). These time scales, athough clearly identifiable, have
important interactions, a point that we will also take into account. Moreover, we will
divide our discussion into two parts, theoretical/ conceptual, and engineering. In
identifying the challenges and research issues we tried to do a comprehensive survey
of the literature and we, in particular, consulted the papers in this volume in order to
assess the important trends. By the very nature of this endeavor of identifying chal-
lenges, this will be rather subjective and mirrors the personal research interests of the
authors.

Table 1. Time scales for understanding and designing agents

time scale designer commitments

state-oriented “hand design”
”here and now”

learning and development | initial conditions; learning and

’ontogenetic” developmental processes
evolutionary evolutionary algorithms;
”phylogenetic” morphogenetic processes

However, we do believe that they reflect, one way or other, the important directions
in the field. Nevertheless, we do not expect everyone to agree.

We propose the following “grand challenges’ for future research, theoretical un-
derstanding of behavior; achieving higher level intelligence; automated design meth-
ods (artificial evolution and morphogenesis), and “moving into the real world”.
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Theoretical Under standing of Behavior

By theoretical understanding of behavior we mean an understanding of how particular
behaviors in the real world can be achieved in artificial agents. This may aso shed
light on how particular behaviors that we observe in nature come about, which is also
one of the goals of artificial intelligence research. This goal is mainly to do with the
“here and now” time scale, i.e. with the question of the mechanisms underlying be-
havior. Although a vast body of knowledge has been accumulated this still remains
one of the big conundrums.

As outlined in the previous section, many research areas and a host of studies have
contributed to this understanding. However, we still don’t have, for example, general
purpose perceptual systems — human or primate vision is still unparaleled, and we
gtill have an insufficient understanding of motor control, e.g. how we can achieve
rapid legged locomotion. For example, there has been alot of progress in research on
humanoid walking robots, especialy in Japan (e.g. Sony’s QRIO, Honda's Asimo,
Kawada's HRP, the University of Tokyo's H-7, to mention but a few). However,
although most of these robots show impressive performance, they still walk slower
than humans, their walking style looks somewhat unnatural, and research on running
isstill initsinfancy.

One of the issues, and thisis one of the challenges, is the fact that most of the re-
search has been focused on control, which has been, and still is, the standard perspec-
tive in robotics. Recent work in the area of biomechanics seems to suggest that mate-
rial and morphological properties, i.e. the intrinsic dynamical properties of the mus-
cle-tendon systems and the specific shapes and material properties of the limbs and
the body play an essentia role in locomotion (e.g. Blickhan et al., 2003; Kubow and
Full, 1999), but also in behavior in general, e.g. object manipulation, posture control,
gesturing, etc. These ideas are captured in the theoretical principle of “ecological
balance’, as outlined by Pfeifer et a., (in press), Hara and Pfeifer (2000), Ishiguro et
al., (2003) and earlier in Pfeifer and Scheier (1999), which states that there is a bal-
ance or task distribution between morphology, materials, control, and interaction with
the environment: Some tasks, e.g. the elastic movement of the knee joint when the
foot hits the ground in running, can be taken over by the — elastic — materials, and
their trajectories do not need to be explicitly controlled. By morphology we mean the
form and structure of an organism and its parts, including the physical nature of the
sensors and their distribution. We discuss materials separately, as they play an ex-
traordinary role in agent design.

There is another aspect of ecological balance, namely that there should be a match
in the complexity of the sensory, motor and (neural) control systems. Many robotic
systems are “unbalanced” in the sense that they are built of hard materials and electri-
cal motors, and thus the control requires an enormous amount of computation. Robot
vision systems are also often unbalanced as they are largely algorithmic and do not
exploit morphological properties. For example, natural systems don’'t have cameras
but retinas that perform some kind of morphological computation by their non-
homogeneous arrangement of the light-sensitive cells. Moreover, generally speaking
retinas perform an enormous amount of computation right at the periphery so that the
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signals that are passed on, are already highly processed. Artificial retinas have been
around since the mid-80s (e.g. Mead, 1989), but they are still not widely used in the
field. Moreover, vision or perception in general is not a matter of mapping inputs to
internal representation, but of sensory-motor coordination, requiring a complex motor
system as well. While initialy it might seem that taking the motor system into ac-
count as well in perception would make the problem harder, when viewed in an eco-
logical context, many problems might in fact be simplified, as demonstrated by the
field of active vision or animate vision (e.g. Ballard, 1991). In animate vision, the
ability of the agent (the vision system) to move is exploited to make the vision task
easier. The development of vision systems, which includes the development of reti-
nas, remains a big challenge. And these vision systems must not be developed in
isolation, but in the context of multi-modal systems (see also below, achieving higher
level intelligence).

Recently, it has been demonstrated that by exploiting the intrinsic dynamics of an
agent, the complexity of the control system can be substantially reduced (e.g. Collins
et al., 2001, lida and Pfeifer, 2004a, b; Wisse and Frankenhuyzen, 2003; Y amamoto
and Kuniyoshi, 2001), as articulated in the principle of ecological balance. Thus, in
order to achieve rapid locomotion, but also motion in general, material properties
must be exploited. In order to achieve rea progress, artificial muscles, tendons, and
flexible joints must be developed which represents a big engineering challenge. Big
strides in this direction have been made by Rudolf Bannasch and his colleagues (Bo-
blan et al., 2004).

Behavior in general requires sensory-motor coordination that again, in natural
systems, is achieved by a subtle interplay of morphology (of the sensory and motor
systems), materials, control, and interaction with the environment. While the design
principles of Pfeifer et a. (in press) do provide intuitions, they are only qualitative in
nature. What is needed now, and this is a big challenge, is a more quantitative ap-
proach. While it is relatively straightforward to quantify sensory data and to estimate
the amount of computation in a controller, little research has been done on quantify-
ing morphology and materials in computational terms. Finding a common currency
which is required for a theoretical and quantitative understanding, is an important
research issue as it will connect the computational effort (or control) with the contri-
butions of physical, i.e. non-computational aspects of the system (for quantitative
research in the field of sensory-motor coordination that will be relevant for these
issues using methods from information theory and statistics, see, e.g. Sporns and
Pegors, 2004; te Boekhorst et al., 2003) (Lungarella and Pfeifer, 2001). Lichtenstei-
ger (2004), for example, demonstrated how the pre-processing function performed by
the morphological arrangement of facets in an insect (or robot) eye, can be measured
guantitatively and how a particular arrangement influences learning speed.

In general, there is a definite need for more quantitative methods in order to turn
the field into a true scientific discipline. Gaussier et a., for example (Gaussier, et al.,
2004) developed a formalism in the form of an algebra for cognitive processes based
on the idea of perception-action coupling in autonomous agents. They apply the for-
malism to demonstrate how facial expressions can be learned and that there is no need
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to postulate innate mechanisms. Other examples of quantification will be discussed in
the section on development.

While we must move towards more quantative methods, there is a certain danger
involved: Because of the limitations of formal description, there tends to be a focus
on isolated, well-formalizable areas, as we know it from the field of classical robotics
and control theory. For example, there is a lot of formal work on path planning and
inverse kinematics which lends itself more readily to a formal treatment than, for
example, locomotion of complex systems involving materials with different kinds of
properties and many degrees of freedom. Formalizing the latter represents a big chal-
lenge.

From an engineering perspective, in addition to the materials of the motor system,
there are challenges concerning the various sensory modalities: haptics for example,
is a very fundamental and rich modality in natural organisms. But the technology is,
compared to natural systems, very underdeveloped: low resolution, hard, non-
bendable materials, pressure only. However, there are exciting devel opments towards
overcoming these limitations, as illustrated by the soft robotic fingertip with ran-
domly distributed sensors for measuring dip and texture by Hosoda (2004). The de-
velopment of skin-sensors by which the entire body can be covered represents a big
challenge, not so much for artificial intelligence, but for the materia sciences, similar
to theissue of artificial muscles. At the moment, thisis a significant bottleneck: better
materials would almost certainly entail a quantum leap in artificial intelligence.

Achieving Higher Level Intelligence

The term “higher level” intelligence is used to designate behavior that is not purely
sensory-motor, such as problem solving and reasoning, or generally thinking, natural
language, emotion, and consciousness. Note that there is a frame-of-reference issue
here: when we say “not purely sensory-motor” it is not really clear whether we are
referring to behavior or mechanism. Inspection of the mechanisms underlying so-
called non-sensory motor or cognitive behavior yields that almost universally the
sensory and motor systems will be involved since in natural systems brains are intrin-
sically intertwined with embodiment and cannot clearly separated (e.g. Thelen and
Smith, 1994). While it is possible in principle to “hand design” agents (see Table 1)
endowed with higher level intelligence, all efforts to date have been met with only
very limited success. One of the big unresolved issues to date is the one of symbol
processing: How isit possible that humans have the capability for symbol processing?
More precisely we would have to ask how it is possible that humans can behave in
ways that it makes sense to describe their behavior as “symbalic”, irrespective of the
underlying mechanisms, which might involve explicit symbol processing or not. The
guestion is very broad and of general importance: it is about how organisms can ac-
quire meaning, how they can learn about the real world, and how they can combine
what they have learned to generate symbolic behavior, a problem known as the
“symbol grounding problem.”. There is general agreement that learning will make
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substantial contributions towards a solution. However, learning aone will not suffice
— embodiment must be taken into account as well.

Drawing inspiration from nature, a consensus has emerged that a productive ap-
proach might be to mimic at some level of abstraction a developmental process. De-
velopment, in contrast to learning, also incorporates growth and maturation of the
organism. There is a vast literature on machine learning that might be potentially
relevant here for solving the symbol grounding problem, but also for development in
general. The book “Re-thinking innateness’ has been viewed as a kind of landmark
publication, employing a connectionist modeling approach (Elman et al., 1996).
While a lot of ideas can be taken from this book, the approach does not deal with
embodiment. Thisis the case with most of the machine learning literature.

As indicated earlier, the impact of taking embodiment into account can hardly be
over-estimated. For example, there is the big challenge of general perception in the
real world: How come we can recognize objects or faces under large variations of
distance, orientation, partial occlusion, and lighting conditions? Again, many people
seem to agree that a developmental approach might be useful. One of the basic issues
isthe fact that agents in the real world do not receive neatly structured input vectors —
as is assumed in most simulation studies — but there is a continuously changing
stream of sensory stimulation which strongly depends on the agent’ s current behavior.
One way to deal with thisissue is by exploiting the embodied interaction with the real
world: Through the — physical — interaction with the environment, the agent induces
or generates sensory stimulation (e.g. Pfeifer and Scheier, 1999). The thus generated
stimulation will typically be more structured, and will contain correlations within and
between sensory channels that greatly facilitate the problem of focusing on the rele-
vant stimulation and is in fact the enabler for learning (Lungarella and Pfeifer, 2001;
Sporns and Pegors, 2004). A very simple example is grasping and centering which
stabilizes and normalizes the visual stimulation of an object on the retina, and at the
same time produces correlated haptic and proprioceptive stimulation. This issue is
covered in the principle of sensory-motor coordination which may be an important
congtituent in bootstrapping perception. Achieving general purpose, flexible and
adaptive perception in the real world is certainly one of the very grand challenges.
This is one of the big research topics in the field of “developmental robotics’ or
“cognitive robotics’ that has recently picked up alot of momentum. It has been sug-
gested that the principle of sensory-motor coordination should be called more gener-
ally the principle of information self-structuring because the agent himself (or itself)
interacts in particular ways with the environment to generate proper sensory stimula-
tion.

Now the goal of this new field is not only perception, but development in general.
An important direction is and has been imitation learning that seems to play a key
role. This research has been inspired by the discovery of mirror neurons in the 1990s
(e.g. Dipellegrino et al., 1992; Fadiga et al., 2000; Gallese et al., 1996) which demon-
strated that motor and sensory systems are very closely intertwined in the brain. De-
signing and building a system capable of a wide range of imitation behaviors is cer-
tainly another one of the big challenges. Important first steps have demonstrated the
in-principle feasibility of this approach (e.g. Kuniyoshi et al., 2004; Jansen et al.,
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2004; Y oshikawa et al., 2004). Robots will no longer have to be programmed, but the
skills they should acquire can simply be demonstrated. While this ability will cer-
tainly improve the sensory-motor behavior of agents, the hope is that it will also con-
tribute to the development of social behavior, and language and communication
abilities. For areview of the research in developmental robotics, see Lungarella et a.
(2004). One of the challenges for the research on imitation is that direct copying is
not possible, because the caregiver has a morphology that considerably differs from
the one of the baby, i.e. certain perceptual generalizations will have to be made by the
baby in order to interpret the caregiver’'s action. Over the last few years, there has
been increasing consensus that joint attention plays a key role in learning and social
development, a topic now being studied in developmental robotics (e.g. Nagai et al.,
2003).

Let us briefly discuss a few additional grand challenges in development, acquisi-
tion of natural language, consciousness, emotion, and motivation. First steps toward
acquisition of natural language, acquisition of a joint vocabulary, has been demon-
strated in Luc Steels's ingenious “Talking Heads’ experiment. Steels also did some
preliminary work on acquisition of syntax, but there is along way to the final goal of
complete natural language devel opment.

Consciousness has always been considered as something like the ultimate criterion
for true intelligence. An elusive and fascinating topic that has attracted quite a bit of
attention in the field of embodied artificia intelligence. Owen Holland is aso having
a stab at the future of embodied artificial intelligence and asks the question of
whether we will be able to achieve machine consciousness (Holland, 2004). A topic
often discussed in investigating consciousness — and in building machine conscious-
ness, are the so-called qualia. Qualia are the subjective sensory qualities like "the
redness of red" that accompany our perception. Qualia symbolize the explanatory gap
that exists between the subjective qualities of our perception and the physical brain-
body system whose states can, in principle, be measured objectively. In our terminol-
ogy, qualia are closely related to embodiment, to the physical, material, and morpho-
logical structure of the sensory systems.

Emotions, another highly controversial topic, also relate to the issue of conscious-
ness and the development of emotional machines is also a topic of interest (for a par-
tial review of an embodied perspective, see e.g. Pfeifer, 2000) . Last but not least, a
topic that anyone interested in intelligence and especialy development will have to
deal with is why an agent does anything in the first place? Why should it learn new
things? This question is especially relevant if there are rich task environments with
many behaviora possibilities. A chess computer only has one task, i.e. to make the
next move, whereas in the real world there are always a host of possibilities — at least
for those agents that we are potentially interested in (not for Braitenberg Type 1 vehi-
cles). It isthe entire issue of motivation, a topic with an enormous history. Luc Steels
and Frederic Kaplan in this volume present two simple but powerful and highly plau-
sible general solutions (Steels, 2004; Kaplan and Oudeyer, 2004). These are all fun-
damental questions of cognitive science.

In order to make development work, a number of engineering challenges must be
resolved. From developmental studies it is known that sensory-motor coordination
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underlies much of concept development. This requires on the one hand the develop-
ment of proper actuators: upper torso with head/neck, and arms with hands. Many
researchers work with torsos only, but given the importance of locomotion for cogni-
tive development, it would be desirable to have complete agents capable of walking
freely in their environments. To date most robots are specialized, either for walking
or other kinds of locomotion purposes, or for sensory-motor manipulation, but rarely
are they skilled at performing a wide spectrum of tasks. Thisis due to conceptual and
engineering limitations. Actuator technology is a major problem as today mostly
electrical motors are employed, whereas — as argued earlier — artificial muscles would
be more desirable. Skin sensors for the fingertips, but also for covering the entire
body, would be essential for building up something like a body image, and ultimately
to bootstrap cognition. Huge transdisciplinary efforts between engineering, biome-
chanics, and material science will be required to make progress here.

Note that although most people in developmental or cognitive robotics are inter-
ested in humanoids, this is by no means the only path. A developmental perspective
can be beneficial for al kinds of animal studies.

High-level intelligence cannot only be achieved using a developmental approach,
but also, at least theoretically, by means of evolutionary methods. We will discuss
them in the subsequent paragraph, but given the state-of-the-art in artificial evolution,
we will have to resort to more direct methods such as hand design or developmental
approaches for the time being.

Automated Design M ethods (Artificial Evolution and Mor phogenesis)

Using artificial evolution for design has a tradition in the field of evolutionary robot-
ics (e.g. Nolfi and Floreano, 2001). The standard approach is to take a particular robot
and use an evolutionary algorithm to evolve a controller for a particular task. How-
ever, if we want to explore morphological issues, and if we want to design entire
agents rather than controllers only, we have to devise powerful methods capable of
handling these issues. Floreano et al. (2004) provide an excellent overview of the
field with many illustrations and experiments.

Because of the many parameters and design considerations involved, automated
methods must be employed because humans will no longer be able to “hand design”
all aspects of such systems. There is the morphology of the body, the materials, the
neural control, the interaction with the environment, and there is the possibility of
having several agents, perhaps simpler ones, perform the task collectively. For indi-
vidua organisms, there have been some initial successful attempts at designing sys-
tems by evolutionary means, the main approaches being the parameterization with
recursive encoding (e.g. Sims, 1994; Lipson and Pollack, 2000), and those where
ontogenetic development is based on abstract models of genetic regulatory networks
using cell-to-cell signaling mechanisms (Eggenberger, 1997, 1999; Bongard, 2002,
2003; Bongard and Pfeifer, 2001; Banzhaf, 2004). The advantage of genetic regula-
tory networks is that they incorporate less of a designer bias and that they alow for
incorporation of interaction with the environment during ontogenetic development,
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developmental plasticity (Bongard, 2003). Moreover, because they encode growth
processes, they also, in some sense, contain the mechanisms for self-repair, an essen-
tial property of natural systems.

There are anumber of challenges, here. Firgt, it is the further development of mod-
els genetic regulatory networks to grow creatures of arbitrary complexity and to make
the evolution open-ended in the sense that not only the parameters of the genetic
regulatory networks can be manipulated, but that the mechanisms themselves are
under evolutionary control. Moreover, understanding and controlling the highly in-
volved complex dynamics of genetic regulatory networks will require a lot of re-
search (see Bongard, 2003; Eggenberger, 1999; and Banzhaf, 2004, for some pre-
liminary pertinent research). An important aspect will be the understanding of the
emergence of hierarchical structures and modularity of the phenotypes (see aso
Floreano et a., 2004). Second, the physics-based simulation models need to be aug-
mented to alow for more sophisticated agent-environment interactions. Also, de-
formable, flexible materials, additional sensors such as “skins’ for covering the entire
body, or olfaction, as well artificial muscles should be accounted for. Third, along
these lines, the task environments must be made much more complex in order to put
these design methods to areal test. In this way, we might be able to observe and bet-
ter understand phenomena of centralization of neural substrate, i.e. the formation of
brains. Eventually we might be able to see not only exploitation of physical interac-
tion constraints, but also social ones. Whether the mechanisms of simulated genetic
regulatory networks will in fact scale to very complex organisms capable of sophisti-
cated socia interaction, is an open question. The grand challenge remains to evolve
truly complex creatures capable of communication, language, high-level cognition,
and — perhaps — consciousness. Several orders of magnitude of scale will have to be
bridged in the process, from molecules to macroscopic organisms. To what extent
physically realistic simulations will be sufficient for this purpose, or whether evolu-
tion actually must happen in the real world with its indefinite richness, is a deep and
currently unanswered issue.

This evolutionary level, designing the evolutionary mechanisms as well as the de-
velopmental processes based on genetic regulatory networks, might in fact provide a
proper level of formalization of ecological balance. While it is indeed hard to find a
common currency for trading computation for materials and morphology, it might
turn out to be much easier to formally specify the developmental processes as en-
coded in the genome. Thisis because, at this stage, it is still undecided how the tasks
will be distributed to control, materials, and morphology for a particular task-
environment.

Moving into the Real World

The last grand challenge that we would like to discuss here concerns very generally
speaking the “move into the real world.” The first significant step in this direction has
been the introduction of the notion of embodiment and the insight that true intelli-
gence aways requires the interaction with the real world. Embodied artificial intelli-
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gence is based on this idea. Building intelligent robots, i.e. robots capable of per-
forming a wide range of tasks, is, as we have argued throughout this paper, hard
enough, and the robots we currently are capable of building are not to our satisfac-
tion, and so building robots per se remains a grand challenge in the field.

In designing higher-level intelligence we identified developmental approaches as a
potentially suitable method. Development requires growth processes that we can
currently only simulate. But there are some tricks that can be applied to make devel-
opment somewhat more redistic vis-a-vis the rea world. One possibility is to start
with high-resolution, high-precision systems with many degrees of freedom. Growth,
at least in some respects, can then be “simulated” by constraining the systems ini-
tially, freezing degrees of freedom, and simulating low resolution, for example, of the
vision sensor in software by applying certain kinds of filters. These constraints can
successively be released which in some sense reflects an organism’s maturational
processes (Gémez et al., 2004).

However, biological organisms actually do grow in the real world by means of cell
division and cell differentiation, a process that may in fact be essential for the emer-
gence of cognition. Developing growing structures in the real world is one of the
great engineering challenges that will require the cooperation of materia scientists,
engineers, molecular and developmental biologists, and nanotechnology experts.
These are, by the way, al disciplines that are not normally associated with artificial
intelligence.

If artificial evolutionary processes are not only to be simulated in a computer but
performed in the real world, we will need growth processes as well. As mentioned
earlier, it is not clear to what extent physics-based smulations will be sufficient for
scalable artificial evolution, and to what extent evolution has to rely on processes in
the real world. First steps in performing artificial evolution in the real world have
been taken aready in the 1960s by Ingo Rechenberg who evolved optimal shapes of
fuel pipes by actually configuring the physical system “designed” by the evolutionary
algorithm (an evolution strategy) and measuring the performance on the real fuel pipe
system (Rechenberg, 1973). Another example is the work by Adrian Thompson at the
University of Sussex who used FPGAS to test the circuits evolved using a genetic
algorithm (Thompson, 1996). FPGAS, in contrast to microprocessors, rather than
making a digital simulation of a circuit, actually configure a physical circuit. The
results achieved are truly amazing and provides a glimpse at the power of evolutionin
the real world.

A major step is taken by researchers in the EU-funded PACE (Programmable Arti-
ficial Cell Evolution) project by John McCaskill of the Ruhr University Bochum, in
Germany, where the goal isto evolve an artificial cell in achemical laboratory. Using
micro-fluidic arrays, carefully controlled chemical reactions can be induced so that
cells can be formed and their metabolisms influenced in precise ways. Part of the
evolution will be performed in simulation and part in the real world. The goal is to
evolve self-replicating cells in the laboratory, an enormous challenge. If successful,
this would enable us to perform artificial evolution in the real world and thus we
could generate any kind of structure required for performing a particular task. Be-
cause the cells can divide we would have actual growth processes in the real world.
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Some people like Ray Kurzweil believe that nanotechnology will be the key to engi-
neer growth in the real world. Whether this will materialize we will only know in the
future.

Cyborgs could also be viewed as a way to “move into the real world”: rather than
constraining the neural substrate to function in a dish in isolation, it is connected to
either a smulation or to a robot that behaves in the real world and sends its sensory
signals back to the neural tissue in the dish (Bakkum et al., 2004). Coupling biologi-
cal neurd tissue to a real world artifact opens up entirely new avenues in man-
machine interaction. This research in itself bears many great challenges, the general
issue of coupling biological and technical substrate. On the one hand, we can expect
to learn something about neural functioning, and on the other we might, in the future,
be able to better understand how to control robots by observing the natural neurons.
Medical applications in prosthetics (e.g. Yokoi et al., 2004), are of course obvious
candidates for practical applications.

Finaly, coming back to the research on sdlf-repair, self-assembly, and self-
reconfiguration discussed in the “Landscape” section, a big challenge, conceptually
and from an engineering perspective, is the development of such systems in the real
world. Again, while simulation of processes of self-repair, for example, represents a
challenge and is far from being straight-forward, the ultimate challenge will be the
transfer to the real world. Murata and his collaborators (2004) have demonstrated first
ideas using modular robotic systems.

4 Conclusions, the Future, and Applications

The challenges outlined are big challenges and we must not expect to reach them in
the near future. However, it is important to keep the long-term visions in mind when
thinking about the next steps. The difficulty of research in any field, but in particular
in artificial intelligence, is to map the big visions and challenges onto concrete, do-
able steps. We have also tried to outline what researchers in the field are currently
attempting to do and what they are planning for the near future. And the papers pre-
sented in this volume provide an excellent starting point.

Let us now return to the initial question of what thinking has to do with walking —
the symbol grounding problem — and reflect on how the challenges outlined in the
paper will contribute to this question which metaphorically summarizes the goals of
embodied artificial intelligence. In the early phases of embodied artificial intelli-
gence, many people were working on navigation and orientation out of a conviction
that locomotion and orientation are somehow the underlying driving forces in the
development of cognition, in the evolution of the brain. This is corroborated by the
question asked by the famous Oxford neuroscientist Daniel Wolpert “Why don’t
plants have brains?’. And he suggested that the answer might actualy be quite sim-
ple: “Plants don’t have to move!” Because of the “embodied turn”, researchers started
working with robots, and because they were readily available and easy to use,
wheeled robots were the tools of choice. Navigation in the real world is a challenging
problem and there has been much exciting research in robotics in genera (e.g. Bellot
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et al., 2004, who introduce the new method of Bayesian Programming) and in bio-
logicaly inspired approaches in particular (e.g. Hafner, 2004). While there was a lot
of progress — researchers were forced to deal with the intricacies of the interaction
with the real world, such as noise, imprecisions, change, unpredictability — there were
also some intrinsic problems with the approach. Remember that one of the aspects of
the principle of ecological balance is the match in complexity of sensory, motor, and
neural systems. Because it is easy to put a high-resolution camera on a robot, and
because wheeled robots only have few degrees of freedom of actuation, many ex-
perimental designs were “unbalanced”: complex sensory systems, very simple motor
systems. As aresult of these unbalanced designs, these systems had a relatively unin-
teresting physical dynamics. One implication is that the algorithms used for control
were largely arbitrary: Even though they were mostly biologically inspired, they were
arbitrary with respect to the robot’s own dynamics; one algorithm can be exchanged
by another, achieving essentially the same behavior. Something was missing and
many suspected that thisis a complex sensory-motor level with an interesting and rich
dynamics.

As a consequence a number of researchers started working on complex body dy-
namics (e.g. Kuniyoshi et al, 2004; lida and Pfeifer, 2004a; Proc. of the Int. Work-
shop on Adaptive Motion in Animals and Machines, AMAM-2003). This shift was
interpreted by critics but also by people sympathetic to these developments, as a
move away from the goal of understanding and building cognitive systems. However,
and this is one of the big insights from embodied artificial intelligence, the exact
opposite was the case: It turned out that a rich complex body dynamics is the founda-
tion, the prerequisite for something like symbol processing to develop (see, e.g.
Okada et al., 2003; lida and Pfeifer, 2004b; Kuniyoshi et al., 2004). So what hap-
pened isthat what seemed like a deviation from the road to cognition, turned out to be
necessary. Thisview is also compatible with Nafiez (2004) who argues that even very
abstract mathematical concepts have their origins, are grounded, in our embodiment
which provides the basis for metaphors. Because these metaphors must be sufficiently
rich for bootstrapping interesting concepts, the embodiment must reflect this richness.
Of course, at the moment, this is all speculation that must be corroborated by many
experiments. But at the risk of being entirely wrong, let us speculate alittle further.

There is another, unexpected idea that emerges from this research. The question of
symbol grounding always entails the question of how it is possible that something like
discrete symbol processing can emerge from a completely continuous dynamical
system, such as a human. Rich, complex dynamics also implies many attractor states
and transitions between them. Attractor states are, within the continuous dynamics,
objectively identifiable, discrete states, that can, of course, also be identified by the
agent itself (or himself), given the proper neural system. Once identified, the agent
can start using them, for example, for planning purposes (e.g. Okada et al., 2003;
Kuniyoshi et al., 2004). It isinteresting to note that a complex intrinsic sensory-motor
dynamics implies that the neural control is no longer arbitrary, but hasto be “in tune’
with the physical substrate, quite in contrast to wheeled robots. Ishiguro and his col-
leagues (2004) have provided a beautiful demonstration, theoretically and in a robot
case study, of how control and body dynamicsin a complex agent have to be coupled.
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If coupled properly, control isnot only ssmpler, but the entire system tends to be more
energy-efficient. Lungarella and Berthouze (2004) in a robotics case study convinc-
ingly demonstrate that a judicious — non-arbitrary — choice of parameters coupling the
neural and body dynamics facilitates the acquisition of motor skills in a developing
organism. Whether these ideas on dynamics will ultimately lead to high-level cogni-
tion or to conscious agents, whether in this way we can achieve the goals set out by
Holland (2004), is an entirely open question.

Tom Ziemke in his contribution (2004) quotes from Gerald Edelman “It is not
enough to say that the mind is embodied: one has to say how.” (Edelman, 1992).
Bootstrapping it from complex body dynamics might be part of the answer.

In their current state, evolutionary studies are, for the time being, restricted to pro-
viding ideas on the distribution of morphology, materials, control, and interaction
with the environment. More varied and taxing task environments will be necessary to
investigate agents with more complex sensory-motor dynamics on top of which cog-
nition can bootstrap. But some of recent approaches demonstrate definite progressin
this direction (e.g. (Bongard, 2003)). However, as aluded to in the previous section,
in order to achieve truly complex organisms, it may be necessary to couple the artifi-
cial evolutionary processto the real world.

To conclude, just few words about applications. While the classical approach has
created many applications in terms of clever algorithms that are now widely used, the
embodied approach seems to be more limited. The major applications have been in
the entertainment and educational areas. As this paper demonstrates, the field is just
beginning to develop a basic understanding and there are many big challenges lying
ahead. We could also add a challenge, namely to exploit these technologies for prac-
tical applicationsin industry, the environment, and services for the benefit of society.

Research on humanoid robots has an interesting side-effect, so to speak. Human-
oids require the development of sophisticated body parts, legs, arms, hands, etc., that
can potentially be used, at |east to some extent, as prosthetic devices. The fascinating
research by Yokoi et a. (2004) and by Boblan et al. (2004) points in this direction.
The ground breaking research by Potter and his co-workers (Bakkum et al., 2004)
might eventually be employed for interfacing these devices smoothly with humans —
an additional intriguing perspective.

As outlined in the section of ubiquitous computing, a better understanding of em-
bodied intelligence will lead to many applications in terms of so-called embedded
systems, i.e. systems that autonomously interact with the real world, not only through
sensing, but also by influencing the world without human intervention. These systems
are not robots in the restricted sense of the word (they are very different from human-
oid robots, for example), but they have many of their characteristics in terms of intel-
ligent, autonomous interaction with the environment. These kind of systems, aso
called “robotic devices’ are already present in many technical applications (cars,
airplanes, household appliances, elevators, etc.), but by augmenting their “intelli-
gence’, so to speak, many more applications will become possible. This way, the
ideas that embodied artificial intelligence has spurred will spread to numerous scien-
tific and technological areas for the benefit of society.
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Abstract. This paper discusses the identity of embodied Al, i.e. it asks the
question exactly what it is that makes Al research embodied. From an engi-
neering perspective, it is fairly clear that embodied Al is about robotic, i.e.
physically embodied systems. From the scientific perspective of Al as building
models of natural cognition or intelligence, however, things are less clear. On
the one hand embodied Al seems to be about physically embodied, i.e. robotic
models of cognition. On the other hand the term ‘embodied’ seems to signify
the type of intelligence modeled and/or the conception of (embodied) cognition
that is underlying the modeling. In either case, it appears that embodied Al, as it
currently stands, might be too narrowly conceived since each of these perspec-
tives is addressed only partially.

1 Introduction

“It is not enough to say that the mind is embodied,;
One hasto say how.” [11]

Although more than a decade old now, the above quote summarizes fairly well what
this paper is about. It will be argued here that, although, practically by definition, re-
search in embodied Al emphasizes the importance of embodiment for cognitive proc-
esses, from a cognitive-scientific perspective it does not take the concept sufficiently
seriously. In particular, in our opinion, many researchers, driven by engineering rather
than scientific concerns and/or in an attempt to distinguish embodied Al from its tra-
ditional predecessor, overemphasize the importance of physical embodiment when it
comes to scientific modeling of cognition. Being physical, however, is only one as-
pect that distinguishes natural embodied cognizers from the computer programs of
traditional, cognitivist Al? Hardly surprising therefore, richer conceptions and discus-
sions of embodiment can be found in, other research fields, such as cognitive linguis-
tics and philosophy of mind. Hence, when it comes to embodied Al as cognitive-
scientific modeling, it remains unclear, and is hardly ever discussed in the field, what
conception of embodied cognition researchers are committed to.

On the one hand, much of embodied Al and its emphasis on physically embodied
models is very compatible with the view of robotic functionalism [15], according to
which embodiment is about symbol grounding or, more generally speaking, repre-
sentation grounding, whereas cognition/thought can still be conceived of as computa-
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tion, i.e. syntactically driven internal manipulation of representations. In a nutshell,
this is the core and “central research focus” of embodied Al according to a recent re-
view of the field in the Artificial Intelligence journal [1], which has subsequently been
rejected as too narrow [5]. On the other hand, much of the rhetoric in the field of em-
bodied Al, in particular its rejection of traditional notions of representation, suggests
sympathy for more radical notions of embodied cognition that view all of cognition as
embodied or body-based. This is what in Section 3 will be referred to as the posi-
tion(s) of “full embodiment” [23] or “radical embodiment” [8]. This paper does not
try to argue for one or the other of these views (although it is hardly a secret that we
favor the second one), but it simply argues that embodied Al researchers have to re-
alize that there are at least two different views that should not be conflated. Or, to
paraphrase and extend the above introductory quote [11]: It is no longer enough for
embodied Al researchers to say that (artificial) intelligence has to be embodied; but
one has to be more specific concerning what that means.

The rest of this paper is structured as follows. The following section further ad-
dresses the problematic identity of embodied Al, i.e. the question what it is that makes
it embodied. Section 3 then briefly summarizes different conceptions of embodied
cognition and some distinctions that might be useful to import into embodied Al re-
search. Section 4 then discusses the implications for embodied Al as cognitive-
scientific modeling.

2 Background: What I's Embodied Al Anyway?

2.1 Motivation

This paper has actually been directly motivated by discussions at and about the
Dagstuhl workshop on Embodied Al. Mentioning the workshop afterwards to other
researchers who had not participated frequently triggered reactions such as “ But, | am
working on embodied Al, why didn't | know about this workshop?” (or “ ..., why
wasn't | invited?”) or “I didn't know there was an embodied Al community” or
“What the heck is embodied Al?” or “Is there any difference between embodied Al
and X?”, where X could be, e.g., (intelligent or cognitive) robotics or (traditional) Al.
There are at least two possible explanations for these reactions: (1) what embodied Al
is, or is about, is simply not particularly well defined, or (2) it is in fact well defined,
but the definition is only well known within a very limited community.

That explanation (1) is at least partly true was also indicated by discussions at the
workshop itself, i.e. among the participants who, naturally, as experts might be sup-
posed to have some level of agreement concerning what embodied Al is, and more
specifically, exactly what it is that makes it embodied. For example, right after a talk
that argued that mathematical cognition, although it might seem abstract at a first
glance, in fact is embodied in the sense that it is based, more or less directly, on bod-
ily experience, another participant in a discussion argued that the activity of an air
traffic controller was situated, but not embodied, i.e. that the body was not involved to
any significant degree (presumably because there is no, or only little, overt movement
involved). The fact that there are different notions of embodiment is hardly surprising
in itself. After all, many central terms in the cognitive sciences, such as ‘intelligence’,
‘cognition’, “agency’, “autonomy’ or ‘life’, are to some degree controversial and still
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far from being well-defined. What is surprising, however, is that none of the work-
shop participants reacted (until long after) to either of the above claims, although they
are based on diametrically opposed positions, namely that all human cognitive proc-
esses are embodied or body-based, or that only some of them are, respectively.

This example clearly shows that even within the embodied Al community there are
in fact very different conceptions of embodiment, and perhaps consequently embod-
ied Al.* As mentioned above, there is not necessarily anything wrong with this - quite
the opposite, different conceptual and theoretical frameworks within a field can in
many cases lead to fruitful discussions. In the embodied Al community, however,
these differences are rarely addressed more than superficially. Fields such as cogni-
tive linguistics, phenomenology and philosophy of mind, on the other hand, seem to
take embodiment much more seriously, which has led to richer and more varied con-
ceptions of embodiment as the basis of, for example, meaning and phenomenal expe-
rience (e.g. [17, 34, 47]). However, one does not have to look at ‘deep’ philosophical
questions to realize that the treatment of embodiment in embodied Al is somewhat
shallow.

A more pragmatic problem with embodied Al, or in fact embodied cognitive sci-
ence in general, is that it seems to be much more defined in terms of what it argues
againgt, i.e. traditional Al? and the computer metaphor for mind, than what it argues
for - a fact commonly pointed out by opponents of embodied theories. That means,
many embodied Al researchers reject the idea that intelligence and cognition can be
explained in purely computational terms, but it is left unclear exactly what the alter-
native is. Characteristic for the field is, for example, the statement that “intelligence
cannot merely exist in the form of an abstract algorithm but requires a physical in-
stantiation, a body” [27]. There are two problems with this: Firstly, being physical can
at most be a necessary condition for intelligence (which, by the way, is contradicted
by some proponents of embodied Al [13, 28]). That means, probably nobody believes
that chairs and tables are intelligent, or make better models of intelligence than com-
puter programs for that matter, just because they are physical. Secondly, it is unclear
exactly which view concerning (dis-) embodiment this is in opposition to (except for
dualism, perhaps). As discussed in more detail elsewhere [6], even proponents of
hardcore computationalism would hardly dispute that computer programs require
some physical instantiation or realization. After all, Newell and Simon, for example,
did not include the word “physical’ in their Physical Symbol Systems Hypothesis [22]
for no reason, but they were of course aware of the need for some form of what is
now called ‘grounding’ (e.g. [1, 15, 37]), although it perhaps never played a crucial
role in their theories.

1 However, most embodied Al researchers, including the author, probably share the intuitive
and somewhat unscientific conviction that, as reviewer 1 formulated it, “embodied Al is Al
done right, i.e. exploring intelligence and cognition by paying attention to the biological, sen-
sorimotor, evolutionary and developmental bases”.

2 As reviewer 2 pointed out, what exactly constitutes ‘traditional Al’ is of course equally ill-
defined as what constitutes embodied Al, especially since some traditional Al systems, e.g.
the robot Shakey, are/were embodied in at least the physical sense (cf. Section 4).
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2.2 Embodied Al: Science Versus Engineering

To some extent the somewhat unclear commitment to embodiment seems to arise
from the fact that embodied Al has the ambition to combine science and engineering,
and that physical embodiment is not equally important in both of them, or at least not
important for the same reasons. As several authors have pointed out, Al generally can
be viewed from at least two different, though intertwined perspectives: that of engi-
neering, mostly concerned with the design of artifacts (robots in the case of embodied
Al), and that of science, mostly concerned with the understanding of natural systems.
Furthermore, the latter can of course be broken down according to the different scien-
tific fields that use robots and/or other autonomous agents as modeling tools, for ex-
ample, cognitive science (e.g. [2, 25, 27]), neuroscience (e.g. [29, 35]), or the study of
animal behavior (e.g. [39, 40]).

While these distinctions appear fairly obvious, they receive surprisingly little at-
tention in discussions of methodology in the field of embodied Al, where overly gen-
eral statements such as “ simulations are useless’ or “ Khepera robots are not real ro-
bots’ or “ existence proofs are not sufficient” often can be heard. While from an
engineering point of view all of these statements might very well be correct, they do
not necessarily apply equally generally to the scientific use of autonomous agents as
models of natural organisms. Steels, for example, explained the skepticism towards
simulations as follows:

The goal is to build artifacts that are "really" intelligent, that is, intelligent in
the physical world, not just intelligent in a virtual world. This makes unavoid-
able the construction of robotic agents that must sense the environment and can
physically act upon the environment, particularly if sensorimotor competences
are studied. This is why researchers insist so strongly on the construction of
physical agents ... Performing simulations of agents ... is, of course, an ex-
tremely valuable aid in exploring and testing out certain mechanisms, the way
simulation is heavily used in the design of airplanes. But a simulation of an
airplane should not be confused with the airplane itself. [31]

Obviously, Steels had a point there, and nobody would seriously question the view
that simulations, however good they are, cannot fully capture the complexities of the
physical world. Hence, simulations certainly have limited value in robot engineering.
Furthermore, it can very well be argued that physically embodied, robotic systems
make better models of animal behavior in cases where a real robot can made to inter-
act with (roughly) the same physical environment as the modeled animal, as in the
case of Webb’s robot models of cricket phonotaxis [39], which could successfully be
tested with real crickets (sounds), or the Pfeifer Lab’s Sahabot [19], which was actu-
ally tested in the Tunisian desert environments inhabited by the ant species whose
navigation behavior it was supposed to model.

However, it is far from clear to what degree this can be generalized to other cases
of more general or abstract modeling. Are, for example, VVogt’s robotic models of
adaptive language games [37], by virtue of their physical embodiment, better scien-
tific models than Steels’ partly physical, partly simulated Talking Heads [32] or their
fully simulated counterparts [38]? After all, neither the robot bodies used nor their
environments in any of the experiments have much of a similarity to their counter-
parts in human adaptive language games. Although from an engineering point of view
the physical models certainly appear more interesting, from a scientific perspective
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there seems to be no strong reason why they necessarily should make better models.
Quite the opposite, as argued in more detail elsewhere [44], in many cases simula-
tions, despite their obvious limitations, might have an important, complementary role
to play, due to the fact that they allow for more extensive, more systematic and more
replicable experimentation, which simply takes less time in simulation, as well as for
experiments, e.g. with evolving robot morphologies (e.g. [4]), that can only be carried
out in very limited form on real robots.

Just as an aside, concerning the role of existence proofs, one should also distin-
guish between engineering and scientific modeling. While from an engineering point
of view existence proofs certainly are of limited value (e.g. nobody would want to fly
in an airplane that has been tested successfully once or twice), from a cognitive sci-
ence point of view they can be very valuable in the development of theories. Much
connectionist cognitive modeling research, for example, has been concerned with
providing concrete examples of neural networks exhibiting properties such as sys-
tematicity (e.g. [3,14]), which on purely theoretical grounds they had been argued not
to be able to exhibit [12]. This is just one example, where existence proofs constrain
and thus aid the development of cognitive-scientific theories. For this type of re-
search, both physical and simulated robots, with their respective benefits and draw-
backs, are useful tools in agent-based modeling [30], paying more attention to the in-
teraction of agents and environments than traditional computational cognitive
modeling of mostly internal processes.

3 Notions of Embodiment

The aim of this section is to briefly overview some distinctions in conceptions of em-
bodiment that might be useful to import into discussion of embodied Al, in particular
for the purpose of clarifying differences in theoretical frameworks and commitments
in the field that usually remain hidden under a superficial agreement on (physical)
‘embodiment’.

Nunez made a useful distinction between trivial, material, and full embodiment
[23]. Trivial embodiment simply is the view that “cognition and the mind are directly
related to the biological structures and processes that sustain them”. Obviously, this is
not a particularly radical claim, and consequently few cognitive scientists would re-
ject it (dualist philosophers of consciousness, on the other hand, might). According to
Nunez, this view further “holds not only that in order to think, speak, perceive, and
feel, we need a brain — a properly functioning brain in a body — but also that in order
to genuinely understand cognition and the mind, one can’t ignore how the nervous
system works” [23].

Material embodiment makes a stronger claim, but it is only about the interaction of
internal cognitive processes with the environment, i.e. the issue of grounding, and
thus considers reference to the body to be only required for accounts of low-level sen-
sorimotor processes In Nunez’s terms: “First, it sees cognition as a decentralized phe-
nomenon, and second it takes into account the constraints imposed by the complexity
of real-time bodily interactions performed by an agent in a real environment” [23].

Full embodiment, finally, is the view that the body is involved in all forms of hu-
man cognition, including seemingly abstract activities, such as language or mathe-
matical cognition [18]. In Nunez’s own words:
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Full embodiment explicitly develops a paradigm to explain the objects cre-
ated by the human mind themselves (i.e., concepts, ideas, explanations, forms
of logic, theories) in terms of the non-arbitrary bodily-experiences sustained
by the peculiarities of brains and bodies. An important feature of this view is
that the very objects created by human conceptual structures and under-
standing (including scientific understanding) are not seen as existing in an
transcendental realm, but as being brought forth through specific human bod-
ily grounded processes. [23]

In a similar vein, Clark distinguished between the positions of simple embodiment
and radical embodiment [8]. According to the former, traditional cognitive science
can roughly remain the same; i.e. theories are merely constrained, but not essentially
changed by embodiment. This is similar to Nunez’s view of material embodiment.
The position of radical embodiment, on the other hand, very much compatible with
Nunez’s full embodiment, is, as Clark formulated it, “radically altering the subject
matter and theoretical framework of cognitive science” [8].

More recently, Wilson distinguished between six views of embodied cognition
[41], of which only the last one requires full or radical embodiment whereas the first
five might be considered variations or aspects of material embodiment: (1) cognition
is situated i.e. it occurs “in the context of task-relevant inputs and outputs”, (2) cogni-
tion is time-pressured, (3) cognition is for the control of action, (4) we off-load cog-
nitive work onto the environment, e.g. through epistemic actions [16], i.e. manipula-
tion of the environment ‘in the world’, rather than ‘in the head’, (5) the environment
is actually part of the cognitive system, e.g. according to Clark and Chalmers’ notion
of the ‘extended mind’ [9], and (6) ‘off-line’ cognition is body-based, which accord-
ing to Wilson is the “most powerful claim” [41].

Finally, we have elsewhere [6, 43, 45] distinguished between the following views
of embodiment and what kind of body it actually requires:

— the view of embodiment as structural coupling between agent and environment,
which does not necessarily require a physical body (e.g. [10, 13, 24);

— the view of historical embodiment as the result of a history of structural cou-
pling and the resulting (mutual) adaptation of an agent to its ecological niche,
which again does not necessarily require a physical body (e.g. [28]);

— physical embodiment, in the sense discussed above, commonly found in the em-
bodied Al literature;

— ‘organismoid’ embodiment, i.e. the view that cognition not only depends on a
physical body, but that (organism-like) morphology plays a crucial role, a view
also commonly found in embodied Al (e.g. [4, 27]); here we can further distin-
guish between the claim that the body mediates between internal processes and
the environment (e.g. computational properties of materials that substitute of
internal processing [26]), which is more in line with material embodiment, and
the claim that the key to the embodiment of cognition is the sharing of neural
circuitry between sensorimotor and more ‘abstract’, cognitive processes, which
is more in line with full/radical embodiment and Wilson’s sixth claim;

— organismic (or organismal) embodiment, i.e. the view that at least some aspects
of mind (e.g. self and phenomenal experience) crucially depend on the autopoi-
etic, i.e. self-creating and —maintaining, organization of living bodies (e.g. 20,
21, 33, 36, 43, 46, 47).
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4 Discussion: Implicationsfor Embodied Al as Science

Raising the question of different conceptions of embodiment in discussions of em-
bodied Al is sometimes dismissed as a philosophical issue of limited value to the
practice of embodied Al research. It should be noted, however, that the questions
raised in this paper, although they overlap with philosophical issues, are not them-
selves questions of philosophy, but questions of scientific methodology and practice,
i.e. the kind of questions that any scientific community has to ask itself, e.g. what de-
fines and sustains a field as such, and the need for shared conceptions and agreed-
upon terminology.

It has been pointed out in this paper that the identity of embodied Al, i.e. what it is
that makes a particular type of Al research (or several, in this case) ‘embodied’, is far
from clear. As mentioned before, from an engineering perspective, it seems fairly ob-
vious that embodied Al is about robotic, i.e. physically embodied systems. From the
scientific perspective of Al as building models of natural cognition or intelligence,
however, things are less clear.

On the one hand embodied Al seems to be about physically embodied, i.e. robotic
models of cognition. This matches the engineering perspective very well, and it al-
lows us to distinguish the approach of embodied Al from its traditional, cognitivist
counterpart which predominantly used computer programs as models of cognition.
However, if physical, robotic models of cognition is what embodied Al is about then
one might ask why there is very little interaction between embodied Al research and
the work of the type carried out, for example, in Reiter’s Cognitive Robotics Group at
the University of Toronto® which uses traditional, symbolic Al techniques, such as
situation calculus, in real robotic systems, i.e. carrying on the type of Al that started
with Stanford’s Shakey project in the 1960s. It seems quite obvious that, despite the
use of physically embodied robots, not many embodied Al researchers would con-
sider this an example of embodied Al. In fact the type of symbolic knowledge repre-
sentation used in this type of Al is rejected outright by many proponents of embodied
Al. The use of physically embodied robots then, after all, does not, at least not by it-
self, seem to be a distinguishing feature of embodied Al.

On the other hand, for many embodied Al researchers, the term embodied seems to
signify the conception of (embodied) cognition that is underlying their work. This
then supposedly is the reason why the work of Reiter’s group, for example, would not
count as embodied Al, because it supposedly is not based on a theoretical framework
that conceives of cognition as embodied. However, this is not unproblematic either,
since, as discussed in the previous section, in some sense(s) the work of Reiter’s
group could very well be characterized as guided by the notions of simple, trivial or
material embodiment. Is then perhaps the conception of radical or full embodiment,
i.e. the view that all of cognition is embodied or body-based, what distinguishes em-
bodied Al from non-embodied Al? Well, this does not seem to match the practice of
embodied Al very well, as discussed above, since clearly not everybody in the field,
perhaps not even a majority, would subscribe to a fully or radically embodied view of
cognition, as previously illustrated by the case of air traffic control. Furthermore, if
embodied Al was actually dedicated to building models of fully/radically embodied
cognition, the community would have to ask itself why it has so little interaction with

3 For details see http://www.cs.toronto.edu/cogrobo/.
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work of the type carried out by, for example, Lakoff, Feldman and Shastri’s Neural
Theory of Language group at Berkeley* that builds neuro-computational models of
embodied cognition, in the full/radical sense, but sees no need for physically embod-
ied, robotic models. Is this not embodied Al, because it deals with non-embodied
models?

Since neither the use of physically embodied models nor the modeling of embodied
theories of cognition seems to properly characterize the identity of embodied Al as
cognitive-scientific modeling, one might ask if perhaps it is the combination of the
two? That means, one might want to characterize embodied Al as the use of (physi-
cally) embodied systems in the modeling of embodied theories of cognition. But
again, both of these would require a substantial re-definition of what we consider em-
bodied Al today, because, as discussed above, either you use a simple conception of
embodiment and thereby include robotically-grounded-symbol-systems-type Al,
which clearly is incompatible with current mainstream embodied Al, or you use the
conception of radical/full embodiment as a theoretical framework, which would ex-
clude much of what is currently considered embodied Al.

Finally, embodied Al does of course not necessarily have to adopt any coherent
definition or theoretical framework, but can continue as the pluralistic research field
that it currently is, addressing to some degree both computational and physically em-
bodied models of both non-embodied and embodied theories of cognition. However,
this runs risk of confirming the old criticism that embodied Al is defined only in
terms of what it is against (traditional Al, which itself is not well-defined either),
rather than what it is about, and it might in fact be worth considering to further open
up the field for research that is currently not considered embodied Al. Whatever the
future of the field, embodied Al as a scientific endeavor would certainly benefit from
further clarification of its own theoretical foundations and commitments.
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Abstract. The idea that internal models of the world might be useful has
generally been rejected by embodied Al for the same reasons that led to its
rejection by behaviour based robotics. This paper re-examines the issue from
historical, biological, and functional perspectives; the view that emerges
indicates that internal models are essential for achieving cognition, that their
use is widespread in biological systems, and that there are several good but
neglected examples of their use within embodied Al. Consideration of the
example of a hypothetical autonomous embodied agent that has to execute a
complex mission in a dynamic, partially unknown, and hostile environment
leads to the conclusion that the necessary cognitive architecture is likely to
contain separate but interacting models of the body and of the world. This
arrangement is shown to have intriguing parallels with new findings on the
infrastructure of consciousness, leading to the speculation that the
reintroduction of internal models into embodied Al may lead not only to
improved machine cognition but also, in the long run, to machine
consciousness.

1 IntheBeginning

“Behaviorism and the acceptance of the norms of the natural sciences in psychology
greatly restricted for a generation or more the range of behavioural phenomena with
which the psychologist, as scientist, was willing to concern himself....There has been
considerable relaxation of this austerity in the past decade, although not without
misgiving and apology.” So begins the classic paper ‘The simulation of human
thought’ (Newell and Simon 1959), and it begins that way because it was presented to
an audience of psychologists. It outlines the approach, assumptions, and achievements
of early artificial intelligence, and, in particular, it makes it clear that the overall aim
of the enterprise was “...the explanation of complex human behavior.” The point of
the opening remarks was that psychology itself was only just ready to accept the
validity of studying such behaviour. Of course, thinking, consciousness, and other
complex human behaviour had been the central subjects of early psychology, but the
methods used, and the standards of explanation, were no longer acceptable: “Those
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who regard thinking as the core of psychological enquiry, and who urge a return to
concern with it, don’t want to turn the clock back.” (Newell and Simon 1959)

It is interesting to see how careful Newell and Simon were to define the limits of
what they were attempting to do. At the end of the paper, they remark: “...(W)e wish
to record our conviction that it is no longer necessary to talk about the theory of
higher mental processes in the future tense. There now exist tools sharp enough to cut
into the tough skin of the problem, and these tools have already produced a rigorous,
detailed explanation of a significant area of human symbolic behaviour”. (Newell and
Simon 1959) With the benefit of hindsight, we can now see the inevitability of the
rise of embodied artificial intelligence; even if they had been correct in their
explanation of higher mental processes, there was a need to deal with those aspects of
behaviour that were not ultimately symbolic, and also with those mental processes
which could not be classified as ‘higher’. The key error of the inheritors of the early
Al tradition was to assume that higher level symbolic processing — representing
knowledge as statements within a language, and reasoning over those representations
— could account for all behaviour, not just for the behaviour identified by Newell and
Simon. As the artificial systems became less abstract and more concrete, and as they
became embodied in mobile robots in the real world, it became clear that something
was wrong. As system resources became faster and more powerful, and something
was still obviously amiss, it became clear that what was wrong was something
fundamental — not merely passing problems of implementation.

In the seventies, the Stanford Cart, along with Shakey, represented the state of the
art in robotics. Rod Brooks, aware of the work of Grey Walter thirty years earlier,
which anticipated much that has been painfully rediscovered in the last two decades
(Holland 2003b), records his feelings while helping with research on the Cart: “I
could not help feeling disappointed. Grey Walter had been able to get his tortoises to
operate autonomously for hours on end, moving about and interacting with a
dynamically changing world and with each other. Here, at the center of high
technology, a robot relying on millions of dollars of equipment did not appear to
operate nearly as well. Internally, it was doing more than Grey Walter’s tortoises had
ever done — it was building accurate three-dimensional models of the world and
formulating detailed plans within these models. But to an external observer all that
internal cogitation was hardly worth it.” (Brooks 2002)

2 TheDevelopment of Embodied Al

Brooks went on to develop a fruitful stream of ideas, the ideas that laid the
foundations of the modern view of embodied systems. Internal models and
representations of the state of the external world were seen as both unnecessary and
harmful. They were rejected both by reasoned argument (Brooks 1991), and by
polemic. They were shown to be unnecessary by the construction and demonstration
of a series of robots that were fast, responsive, robust, and apparently capable of
everything of which the robots of the old school were incapable. The new ideas went
into space, and into war. In time, the techniques for milking high performance and
apparent intelligence out of simple robots developed into a sophisticated technology,
with elegantly expressed principles, and some stunning examples of their deliberate
application (Pfeifer and Scheier 1999). Much of this flowed from the exploitation of
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the nature and consequences of embodiment. Carefully chosen structures -
morphologies and materials — could in effect process information, filtering and
controlling without filters or controllers. Robots with bodies and simple behaviours
closely coupled to the environment could produce sophisticated emergent behaviour.
Even better, many of these phenomena had parallels in biology. Indeed, some of the
most spectacular exploitations were inspired by observations of biological systems
and natural behaviour. The development of artificial evolution in various forms
showed how intelligent behaviour could best arise not from the evolution of control
systems (brains) alone, but from the simultaneous evolution of control systems, sensor
placements, morphology, and materials.

An excellent and elegant example of many of these trends is the work of
Lichtensteiger and Salomon (2000). The facet distributions of many insect compound
eyes have been observed to vary considerably between species. One of the main tasks
performed by the compound eye is the guidance and control of flight, using optic flow
information. It is believed that certain arrangements of facets can simplify the control
problem, enabling the use of simpler control architectures and offering some
additional operational advantages; furthermore, the optimisation of facet distribution
for different task environments may account for much of the observed inter-species
variation in eye morphology. Lichtensteiger built a physical model of a compound eye
in which the placement of the 16 individual facets could be adjusted by means of
motors and gears. The outputs of the facets fed into a fixed controller which was used
for a variety of tasks — for example, for estimating the distance of the system from a
light of a given orientation. Artificial evolution was then applied to the positioning of
the facets, with the fitness function being the quality of the solution produced by the
controller. The eventual distribution of the facets resembled that found in insects, and
varied appropriately with the requirements of the different tasks. The evolved
morphology of the model eye was thus shown to play a critical part in filtering, and
therefore processing, the visual information in a biologically significant and task
dependent manner.

3 Arrested Development?

Despite this torrent of good news, there were doubters, because there were doubts.
Although nothing about embodiment demands it, most of the robots were
predominantly reactive. One of the catchphrases of the period was ‘the world is its
own best model’. Why build and maintain an internal model of a world that was
directly available to the sensors? If the information was in the environment, the robots
could exploit it quickly, economically, reliably, and robustly. But what if it wasn’t?
What if it had been there, but had disappeared, or had been hidden? What if it was
now too far away to affect the immediate action? Dealing with these contingencies is
the province of cognition (Clark and Grush 1999) and though the new embodied
systems were freely and uncontroversially described as intelligent, they were not
always as readily described as cognitive. True, some tasks previously thought to
require cognition were shown to be achievable without it, just as collective tasks
thought to be difficult or impossible to coordinate without explicit communication or
memory turned out to be easy when the communication and memory were placed in
the environment in a way that enabled the operation of stigmergy. The robot Toto



40 0. Holland

(Mataric 1992) could build and exploit a kind of map of an environment, but did so in
a way that was so closely coupled to immediate sensing and movement that it seemed
to belong entirely in the behaviour based camp. No limits were placed on the
intelligence that would eventually be achieved without representation — but it was to
be understood that the process of developing such intelligence would take some time,
and so the approach should not be judged solely on the basis of its limited
performance to date.

Early challenges to the new approach came not from outside, but from inside. The
behavior based, closely coupled, grounded, embodied stuff dealt well with immediate
contingencies, but could not deal with situations where mapping and simple planning
were more suitable. What could be more natural than to combine the two techniques,
superimposing a deliberative/planning layer on top of a reactive robot, yet
representing the result as predominantly behaviour based? These hybrid architectures
were built and demonstrated, but they did not seem to have the impact of the purer
designs. At about the same time (or earlier, according to Brooks) some proponents of
classical GOFAI style robots had added what looked very like a reactive layer to
support their designs. In 1997, Stein wrote of these endeavours: “Unfortunately, much
work along these lines has has taken the approach to be expected of computer
scientists: layering separate ‘thinking’ systems on top of ...robotic bodies. Since the
two typically need a separate component to mediate between them, the resulting
(prevailing) approach to cognitive robotics has come to be known as a Three Level
Architecture, or TLA....Although it is built out of two reasonably successful fields of
research — robotics and traditional artificial intelligence — this approach to cognitive
robotics has been severely limited....” The details of some of these schemes, along
with an analysis of their limitations, can be found in Horswill and Stein’s earlier
review (1994).

Animals do not seem to suffer from the problems associated with integrating
fundamentally different subsystems. Nothing is more quick and agile than a primate
in a tree, yet this same primate will have clearly demonstrable cognitive abilities —
and even some ability to manipulate symbols, though this may never occur in the
wild. The exploitation of embodiment is clearly necessary, and the embodied Al
community has shown how to do it. But something is missing from the current vision
— something to do with cognition, with a system taking account of things unseen.
Adding the two modes of operation together does not seem to work. Is there some
way of starting from embodiment, using all the principles and tricks we know, and
ending up in truly cognitive territory?

4 Modelsand the Rehabilitation of Representation

The most eye-catching features of the early behaviour based robots were their speed
and responsiveness. They were not fast and responsive just because they did little
calculation, but because what little calculation they did was directed towards the
simple connection of sensing (or perception) and movement (or action). The work
was done by the interaction between the two, mediated by the body and the
environment. Speed is good in many walks of life. In biology, it is often critical. And
accuracy is also important. However, there was no pressure on behaviour based robots
to increase their speed, and the accuracy of their movement was never held at a
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premium — indeed, their motion control was often made deliberately poor to show that
their success in a noisy and dynamic world did not depend on precisely calibrated
components. If speed and accuracy had been more important, then perhaps the road to
cognition would have been mapped out two decades ago.

As noted above, many animals are quick and agile; we take it for granted when we
see squirrels or monkeys racing through treetops. But this speed and accuracy of
movement is not intrinsic to the components. Human sensors and neurons are slow,
and they and muscles have very variable characteristics. If a fast reaching movement
was carried out by simply stimulating the neurons controlling the muscles in some
predetermined pattern, the result would vary significantly on different occasions. One
way of coping with such variability in nature or in engineering is by using a feedback
controller — measuring the difference between the actual movement and that specified
by the pattern of stimulation, and adding some appropriate stimulation to correct for
the error. Unfortunately it takes a relatively long time for the visual system to
respond, and so a fast movement could become very inaccurate indeed by the time a
correction is issued. One way of dealing with this in an engineering system is to use a
forward model — a system component that, when given information about the
sequence of stimulation, produces an output corresponding to the arm configuration
that will result. In what sense will it “‘correspond’? One option is to produce an output
duplicating the sensory input that the final configuration would produce. If the
forward model component produces its output before the arm actually reaches its end
point, then the forward model will have predicted the sensory input that will come
from the final configuration. Such a prediction can be put to a number of uses, but in
the present context the most important is that, instead of generating a late feedback
correction using the difference between the final sensed configuration and that
specified by the pattern of motor stimulation, the system can generate an early
correction by using the predicted instead of the final configuration. This will result in
a smoother correction, and a more accurate final result.

This is an engineering solution. Is there any evidence that such systems are present
in animals? There is a wealth of such evidence, and it is a very active field of research
(see review by Wolpert and Ghahrahmani [2000]). Moreover, forward models are not
just found in primates, but occur also in insects (see review by Webb [2004]). The
inputs to the neural structures forming the forward models are the well known
efference copies or corollary discharges — copies of the volleys of impulses sent to the
muscles or to the neurons controlling them. But the key thing to notice is the
significance of the outputs: they are, in effect, copies of the sensory inputs that will
occur as a consequence of those muscle-controlling volleys. In the sense identified by
Clark and Grush (1999), they are potential cognitive elements, able to ‘stand for’
something not currently present.

Improving the accuracy of fast movements is only one possible use for forward
modelling — the reviews mentioned above note several possibilities, and examples of
their use. If the sensory inputs do not match those predicted by the forward model,
then something in the environment must have changed. One of the major functions of
the cerebellum seems to be to predict the sensory consequences of movement,
probably in order to detect changes in the environment. Such a system automatically
corrects for self-movement. Only one of these benefits may have channeled the
evolution of forward models, but once the forward model had evolved, the other
benefits would be potentially available.
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5 OneStep Further

A recent paper by Grush (2002) develops the ideas set out above in some detail. More
importantly, it extends them in a direction that suddenly enables a plethora of
potentially cognitive applications. A forward model (or emulator, in his terminology)
driven by efference copies predicts the sensory inputs that will be produced by those
efference copies, but the system as a whole receives both real sensory input and the
predicted sensory input. What would happen if the real sensory inputs were gated off
somehow? The sensory input to the system would then consist only of the predicted
input. Suppose now that the system is driven by efference copies, but that the motor
commands from which those copies originate are gated off so that they have no effect
on the body. If the forward model was good and complete enough, the evolution of
the system would predict the sensory inputs expected from those motor commands,
were they to have been carried out. If the forward model is modelling only
proprioceptive inputs — signals from tendons, joints, and muscles — then the system
will produce what Grush calls motor imagery: the full proprioceptive repertoire that
would be produced by the movement that would have occurred if the motor command
had not been gated off.

But the real meat of Grush’s thought is in his extension of his emulator theory to
exteroceptive sensing. He wuses the example of vision because two robots
implementing something very like his theory were built fifteen years ago by Mel
(Mel, 1986, 1988). The terms in which Mel described his work are very different from
those used by Grush, but the reinterpretation is convincing. In a nutshell, the system
learns a forward model which includes visual sensory input, and so by disconnecting
both the real sensory input and the real motor output, the system is able to operate in a
closed system in which visual imagery of the external world is generated. The system
is therefore able to produce the sensory input corresponding to what would occur in
the external world if a “hypothetical’ movement were carried out. The whole point of
Murphy, of course, was to learn off-line in this closed environment, and then
demonstrate this learning in the real situation.

Grush is therefore able to make the case for an incremental and almost inevitable
progression from the simple requirements for enabling fast and accurate movement to
a system able to engage in the most demanding cognitive activity, imagination. And
during the whole exposition, representation is dealt with at the most primitive sensory
level; there is no requirement for anything beyond the familiar sensory-motor level;
and the emphasis throughout is on the body, sensors, and effector control. If our
simple robots, in their exploitation of embodiment, were required to make faster and
more accurate movements than their circuitry and effectors could manage with only
feedback control, then we would have to equip them with the capacity for forward
modelling. Once we had done that, a few small and ideologically unobjectionable
steps would carry them to the threshold of cognition. Our fear of the world model
would vanish. | believe this is the path that could and should lead embodied artificial
intelligence into the area of cognition.
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6 AreWeThereYet?

As in the case of Grey Walter, there are always precursors to significant movements,
and we can see one in Stein’s MetaToto (1991, 1994). It was based on Mataric’s Toto
(Mataric 1992), the behaviour based robot mentioned above that was capable of
building a “world model” — a dynamic graph with nodes corresponding to
environmental landmarks defined in sensory terms (gross sonar readings and compass
readings, augmented by odometry records from previously encountered landmarks).
Toto could find its way to a goal location by using spreading activation in the
landmark graph to find the direction, and following the indicated path until the
specified landmark was reached.

The language used in Stein’s 1991 paper is quite non-partisan:

“Toto’s landmark representation and goal-driven navigation are cognitive tasks,
involving internal representation of the external environment. This represents a
qualitative advance in the capabilities of subsumption-based robots. Nonetheless, this
internal representation is available only through interaction with the world....This
paper is concerned with a concrete example of the integration of higher-level
cognitive Al and lower-level robotics. Robotic systems are embodied: their central
tasks concern interaction with the immediately present world. In contrast, cognition is
concerned with objects that are remote — in distance, in time, or in some other
dimension. We exploit the architecture of a particular robotic system to perform a
cognitive task, by imagining the subjects of our cognition.

We suggest that much of the abstract information that forms the meat of cognition
is used not as a central model of the world, but as virtual reality. The self-same
processes that robots use to explore and interact with the world form the interface to
this information. The only difference between interaction with the actual world and
with the imagined one is the set of sensors providing the lowest-level interface.”
(Stein 1991)

MetaToto is simply Toto modified through *...the creation and integration of an
imagination system.” This is a photographed floor plan of an environment, a means of
translating position on the floor plan to simulated sonar inputs, and a means of
changing position according to Toto’s motor outputs. Toto explores the floor plan as
it would a real environment, creating landmarks from the simulated sonar data as it
goes. When transferred to the real environment for the first time, MetaToto is able to
go directly to a commanded goal landmark. The crudeness of the sonar modelling (ray
tracing) does not matter; the overall model is good enough. “The inaccuracy of
MetaToto’s imagination (is) little worse than the variance between two runs of the
actual robot...”

The paper ends with the hope that: “...experiences with MetaToto will lead to
more sophisticated use of imagination and virtual sensing, and to the development of
truly embodied forms of cognition.” It is perhaps significant that Grush is able to
accommodate MetaToto within his framework. In this collection, Ziemke’s recent
work deals with similar issues. However, where Toto’s imagination was enabled by
the external provision of the floor plan of the environment, Ziemke’s robot must rely
on its previous experience of the real environment. But the main thrust is similar:
outputs for controlling movement produce simulated sensor inputs which correspond
to the inputs that would have been produced by a real movement in the real
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environment; these inputs elicit further movement commands, and so on, with the
chaining of successive actions leading to an extended sequence.

7 WhereDoWeGo from Here?

Reaching cognition through simple internal modelling seems a large enough step to
many within the field of embodied artificial intelligence, and there may be a danger
that progress will stop too soon. MetaToto and Murphy may have attained some form
of cognition, and in the right way, through exploiting the principles of the discipling,
but they have not derived any spectacular benefits from so doing. Perhaps we should
look at the progress that modelling seems to have enabled within the natural world.

In biology, the keenest advocate of the utility of modelling for prediction is
Richard Dawkins. In 1976 he set out his view that animals can be regarded as
machines designed to ensure the survival and propagation of their genes, and
remarked: "Survival machines that can simulate the future are one jump ahead of
survival machines who can only learn on the basis of overt trial and error.” (Dawkins
1976). More recently, he noted that an animal’s body “...represents a kind of
prediction that the future will resemble the past, in broad outline. The animal is likely
to survive to the extent that this turns out to be true. And simulation models of the
world allow the animal to act as if in anticipation of what that world is likely to throw
its way on the next few seconds, hours, or days.” (Dawkins 1998)

The force and utility of this kind of active modelling has been best expressed by
the philosopher, Dan Dennett, in his description of a hypothetical creature, the last of
three in an evolutionary sequence (Dennett 1995). The first, the Darwinian creature, is
the basic model. Its responses to its environment are specified by its genes; those
examples with genes producing bad responses die, and those with genes for good
responses survive to breed, eventually producing a population with better responses.
The second, the Skinnerian creature, is capable of learning, and as a result becomes
capable of producing better responses if it is not killed by an early bad response. The
one of greatest interest is the Popperian creature, which is able to preselect its
responses so that those likely to kill it are inhibited:

“But how is this preselection in Popperian agents to be done? Where is the
feedback (about the quality of the proposed action) to come from? It must come from
a sort of inner environment — an inner something-or-other that is structured in such a
way that the surrogate actions it favours are more often than not the very actions the
real world would also bless, if they were performed. In short, the inner environment,
whatever it is, must contain lots of information about the outer environment and its
regularities....we must be very careful not to think of this inner environment as simply
a replica of the outer world, with all its physical contingencies reproduced....The
information about the world has to be there, but it also has to be structured in such a
way that there is a nonmiraculous explanation of how it got there, how it is
maintained, and how it actually achieves the preselective effects that are its raison
d’etre.” (Dennett 1995, pp375-6).

The forward modelling idea provides the predictive element, but Dennett
emphasises that prediction alone is not enough — that feedback is needed ‘about the
quality of the proposed action’. This aspect of the idea is hugely underexplored.
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8 Let’'sStart Again

We can combine the biological and robotic perspectives by considering the problems
of an autonomous embodied agent in a complex, occasionally novel, dynamic, and
hostile world. It is useful to think of the agent as having a mission — some long term
task or set of tasks that it is required to achieve. The details and complexity of the
mission do not matter. Animals vary enormously in their behavioural repertoires and
lifestyles, but they all have exactly one mission, and it is the same one for everything
from bacteria to elephants: to propagate their genetic material, either directly or
indirectly, as effectively as possible. Survival, often thought to be at the root of
animal behaviour, is of course merely the means to the end of the universal mission of
successful reproduction.

In order to maximise its chances of achieving the mission, the agent should at all
times produce the action most likely to lead to the achievement of the mission. How
can this be arranged, given that the agent is in a ‘complex, occasionally novel,
dynamic, and hostile’ world? There are only a small number of possibilities:

e By being preprogrammed for every possible contingency. This is of course
impossible, given the presumed finite means available to the agent, and the
unqualified complexity and novelty of the world. However, it is possible for
the agent to be preprogrammed for some sensed subset of contingencies — its
Merkwelt — but this will necessarily be suboptimal, in that the actions
selected will not always be those most likely to lead to success. Invertebrates
probably operate like this.

e By having learned the consequence for the achievement of the mission of
every possible action or action sequence in every contingency, and by
selecting the best available? This is not possible for the obvious variants of
the reason given above, and for another reason: given that the world is
hostile, some of the possible actions tried during learning will lead to the
destruction or disabling of the agent, as with Dennett’s Skinnerian creature.
But it might perform better than an agent with invariant responses.

® By being able, through learning or otherwise, to predict the consequences of
actions, by being able to evaluate those consequences for their likely
contribution to the mission, and by selecting a relatively good course of
action? This, the strategy of Dennett’s Popperian creatures, seems to be the
only strong contender for arriving at the ‘best’ action. What we need to
investigate within embodied Al is the range of architectures capable of
delivering adequate combinations of prediction, evaluation, and selection.

It is outside the scope of this brief paper to examine these three features in any detail,
but what we can do is to comment on the central method, that of simulation using
internal models. Assuming that prediction is to be achieved through simulation, what
exactly has to be simulated? The answer is both obvious and interesting: whatever
affects the mission, and nothing else. An embodied agent can only affect the world
through the actions of its body in and on the world, and the world can only affect the
mission by affecting the agent’s body. The agent therefore needs to simulate only
those aspects of its body that affect the world in ways that affect the mission, and only
those aspects of the world that affect the body in ways that affect the mission. How
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does the body affect the world? To some extent through its passive properties, but
mainly by being moved through and exerting force on the world, with appropriate
speed and accuracy. How does the world affect the body? Through the spatially
distributed environment (through which the body must move) and through the
properties of the objects in it (food, predators, poisons, prey, competitors, falling
coconuts, etc.) What is interesting about these observations is that what needs to be
simulated is determined more by the agent’s embodiment than by anything else.

What is needed for simulation? A minimal statement might be: Some process or
structure interpretable as a state of the world that, when operated on by some process
or structure interpretable as an action, yields an outcome interpretable as and
corresponding to the consequence of that action. (In fact, ‘simulation’ seems to imply
more than this predictive function - perhaps that not only the interpreted outcome, but
also the underlying processes, must correspond more directly in some way to
whatever is being simulated.)  These structures or processes are best referred to as
‘internal models’, because they are like working models rather than static
representations, and because the term was used in this sense by Craik (1943) and later
by Johnson-Laird (1983) and others.

So we require a model that includes the body, and how it is controlled, and the
spatial aspects of the world, and the (kinds of) objects in the world, and their spatial
arrangement. But consider: The body, and its controller, is always present and
available, and changes slowly, if at all. When it moves, it is usually because it has
been commanded to move. The world, however, is different. It is ‘complex,
occasionally novel, dynamic, and hostile’. It is only locally available, and may
contain objects of known and unknown kinds in known and unknown places. How
should all this be modelled? As a single model containing body, environment, and
objects? Or as a model of the body coupled to and interacting with the other modelled
components? From the point of view of both biology and computer science, it seems
overwhelmingly probable that the best solution will involve some separation of these
components, since they seem to be of fundamentally different types. A sensibly
designed simulation engine would define a space, place types of objects within it, and
control a body moving through the space and interacting with the objects.
Interestingly enough, if we adopt this scheme, then we are saying that, in order to
behave intelligently by predicting the consequences of events, an embodied agent
should run a simulation of itself coupled to a simulation of the world. However, by
most current criteria of embodiment, the internally simulated agent - the internal agent
model - can also be regarded as being embodied! Given that much of embodied Al is
carried out in simulation, it would seem difficult to object to an internal model that
was itself an embodied agent.

We seem to have arrived at a view of the type of system likely to be able to deliver
the cognition missing from current embodied Al. It is more complex than most
existing systems, but the possibility of achieving a true cognitive capability, and the
accompanying liberation from the limitations of purely reactive systems, surely justify
the extra cost. However, recent developments elsewhere in cognitive science seem to
imply that architectures containing separate but interacting internal models of the
body and of the environment may have the potential to deliver much more than this.
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9 Another Psychological Revolution

We began with the remarks of Newell and Simon in 1959 that the climate within
psychology had only recently permitted the investigation of topics such as thinking.
Another such change has taken place within psychology in the last ten years, and
there are some signs that this liberalisation is enabling and stimulating research
outside psychology. The change is this: it is now acceptable to study, not just
thinking, but consciousness itself. What is more, the early indications are that ‘the
sciences of the artificial’, in Simon’s phrase, may have a contribution to make.

In 1994, Francis Crick recounted the remark of a psychologist to a younger
colleague: “It’s all right to be interested in consciousness, but get tenure first.”
Tenured or not, a lot of people have got interested since then. There has been the
foundation of the Association for the Scientific Study of Consciousness, with an
annual conference, and determinedly high scientific standards. The huge biennial
meeting in Tucson, held at the Center for the Study of Consciousness, is called
“Towards a Science of Consciousness’. There are journals, and workshops, and there
has been an exponential rise in the rate of publication of all sorts of books on
consciousness. But what significance does this hold for the field of embodied artificial
intelligence?

10 The New View of Consciousness

What has happened in the last decade has not simply been a resumption of
philosophical and psychological discussions about consciousness, but an explosion of
new findings that have transformed our view of the phenomenon. So what is
consciousness? Again, Crick offers some help:

“Everyone has a rough idea of what is meant by consciousness. It is better to avoid
a precise definition of consciousness because of the dangers of premature definition.
Until the problem is understood much better, any attempt at a formal definition is
likely to be either misleading or overly restrictive, or both.” (Crick 1994)

The diversity of content in a typical consciousness conference shows that the
community behaves as if his advice had been accepted. Is progress being made
towards understanding the problem? That is certainly true in one sense, because, on
the new view, consciousness is certainly a problem. At the time at which Newell and
Simon were writing, it was still generally accepted that consciousness ‘worked’, in
some sense. Conscious thought, especially intellectually challenging areas such as
problem solving, showed the mind working as an integrated, harmonious whole, and
an artificially intelligent system would be expected to simulate the operations
apparently controlled by consciousness. None of that is true any more. As
Negrretranders puts it:

"Consciousness is a peculiar phenomenon. It is riddled with deceit and self-
deception; there can be consciousness of something we were sure had been erased by
an anaesthetic; the conscious | is happy to lie up hill and down dale to achieve a
rational explanation for what the body is up to; sensory perception is the result of a
devious relocation of sensory input in time; when the consciousness thinks it
determines to act, the brain is already working on it; there appears to be more than
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one version of consciousness present in the brain; our conscious awareness contains
almost no information but is perceived as if it were vastly rich in information.
Consciousness is peculiar.' (Ngrretranders 1998 p286).

Ngrretranders is not a scientist, but a journalist. In this context, that is an
advantage, because he is able to react freely to the new view of consciousness. What
has happened? There is no single cause. Better medical care and diagnosis means that
unusual injuries and illnesses are survived and reported. The effects of many of these
are fascinating — some of the cases described in the books of Oliver Sacks spring to
mind — and much of that fascination is with instances of bizarre cognition rather than
changes in consciousness. But what is surely odd is that perfectly normal
consciousness can coexist with bizarre views of the world. An individual is paralysed
on one side after a stroke, but denies it. However, if ice-cold water is squirted into the
ear on the same side, she talks freely of her paralysis, and asks why people are asking
her about something so obvious. Twelve hours later she is denying the paralysis again
— and is also denying having admitted to it following the ice water treatment!
(Ramachandran and Blakeslee 1998 pp144-5).

Psychologists experimenting on normal individuals have exposed huge differences
between what we believe is happening, and objective reality. Voluntary action, the
bedrock of civil society, turns out not to be willed and then executed, but first
executed and then attributed to ourselves (Wegner 2002). Our subjective ‘now’ is
running about half a second late, but is somehow backdated so that everything seems
coherent (Libet 1989). Under some circumstances we fail to notice huge changes in
our surroundings — changes as great as the person we are talking to being replaced by
a different person (Simons and Levin 1998). One classic demonstration of what is
known as inattentional blindness involves a film of an impromptu basketball game
between a team dressed in white and one dressed in black; the viewers are asked to
count the number of times the white team catch the ball. At the end of the film,
members of the audience are asked if they saw anything odd during the film, and most
answer that they did not. The film is run again, and they see that, halfway through, a
woman in a gorilla suit runs onto the set and does her best to attract attention, jumping
up and down in the centre of the screen and waving her arms (Simons and Chabris
1999). The exotic syndrome of multiple personality seems to be real, to the extent that
the brain scans of an individual differ when different personalities are ‘in charge’
(Reinders 2003). Some people blinded through brain injury will report that they are
completely blind — yet they can point quite reliably to light stimuli (Weiskrantz 1986).

The upshot of findings such as these is this: it is no longer possible to believe that
consciousness is some ideal and perfect process, but rather that, under most
conditions and for most people, it presents a consistent illusion of being such a
process. What is the utility of consciousness, and why, when examined closely, does
it seem so ramshackle and bizarre? Surely no self-respecting engineer would ever
design such a system. How and why did it evolve?

11 Models, Bodies, and Consciousness

In 1976, Dawkins, in his section on the utility of modelling, allowed himself to
speculate:
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“The evolution of the capacity to simulate seems to have culminated in subjective
consciousness...Perhaps consciousness arises when the brain's simulation of the world
becomes so complete that it must include a model of itself." (Dawkins 1976).

The brain may or may not model itself, but it is very likely to model more than just
the characteristics of the limbs. The neuroscientist Ramachandran takes a
COMMONSeNse View:

“...(Ot is always obvious to you that there are some things you can do and others
you cannot given the constraints of your body and of the external world. (You know
you can’t lift a truck...) Somewhere in your brain there are representations of all these
possibilities, and the systems that plan commands...need to be aware of this
distinction between things they can and cannot command you to do....To achieve all
this, | need to have in my brain not only a representation of the world and various
objects in it but also a representation of myself, including my own body within that
representation....In addition, the representation of the external object has to interact
with my self-representation....” (Ramachandran and Blakeslee 1998 p249).

This is reminiscent of part of Grush’s view. Grush distinguishes between two types
of emulation: modal (which is tied to a particular modality); and amodal, in which an
emulation of an environment is run, and sensory consequences are established by
carrying out some kind of measurement on that emulation.

Ramachandran’s notion of some kind of separateness between the model of the
body and the model of the environment is supported by much of the modern work in
consciousness. Perhaps more importantly for those who believe in the importance of
embodiment, the model of the body appears to be very closely linked to
consciousness itself. One of the major figures in consciousness studies is Antonio
Damasio; he has played a key role is showing that consciousness, far from being some
abstract and ethereal state, is very tightly linked to bodily events. In Damasio (1999),
he proposes a neurologically based theory of consciousness in which the development
of a primitive body-centred self structure plays a crucial role. The theory itself is
complex, but his hypothesis is well summarised by Churchland (2002) in a paper
examining self-representation in nervous systems:

“...the self/nonself distinction, though originally designed to support coherencing,
is ultimately responsible for consciousness. According to this view, a brain whose
wiring enables it to distinguish between inner-world representations and outer-world
representations and to build a metarepresentational model of the relation between
outer and inner entities is a brain enjoying some degree of consciousness ....
Conceivably, as wiring modifications enable increasingly sophisticated simulation
and deliberation, the self-representational apparatus becomes correspondingly more
elaborate, and therewith the self/not-self apparatus. On this hypothesis, the degrees or
levels of conscious awareness are upgraded in tandem with the self-representational
upgrades.” (Churchland 2002 p 310).

The recent development of this bodycentric point of view is emphasised in Watt’s
review of Damasio’s ideas: "...consciousness requires that the brain must represent
not just the object, not just a basic self structure, but the interaction of the two....This
is still an atypical foundation for a theory of consciousness, given that until recently,
it was implicitly assumed that the self could be left out of the equation. There has
been a recent sea change on this crucial point..." (Watt 2000).

For once, there is also some philosophical support: Thomas Metzinger (2000,
2003) has proposed a theory of consciousness, rooted in phenomenological analysis,
that is explicitly based around the concept of the self-model:
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"The phenomenal self is a virtual agent perceiving virtual objects in a virtual
world...I think that 'virtual reality' is the best technological metaphor which is
currently available as a source for generating new theoretical intuitions...heuristically
the most interesting concept may be that of 'full immersion'....(the phenomenal self-
model)...is a plastic multimodal structure that is plausibly based on an innate and
‘hardwired’ model of the spatial properties of the system (e.g. a ‘long-term body
image’...) while being functionally rooted in elementary bioregulatory processes....”
(Metzinger 2000).

The consensus that seems to be building is strikingly consonant with the
development of ideas within embodied artificial intelligence: the structure at the
centre of consciousness is the physical body. It is also consonant with the direction in
which | believe embodied artificial intelligence should progress: at the heart of the
mechanism is not just the body in the environment, it is a model of the body in a
model of the environment. A bit of such modelling can give our machines cognition;
will more of the same give them consciousness?

12 An Objection Dismissed

To many within the field of embodied Al, this easy talk of self models and world
models will evoke the ghost of GOFAI. Did not the experience of the robotics
pioneers show that the problems of building, maintaining, and using internal models
of external reality were insuperable? Did not Brooks’ classic paper ‘Intelligence
without Representation’ demonstrate the fundamental error at the heart of the model-
based approach? The answer to both questions is yes — and no. Yes, the pioneers built
models, and yes, they and their robots ran into trouble, but the models, expressed as
sentences in formal languages, were simply inappropriate and inadequate for the
purpose of controlling robots in real time in dynamic and partially known
environments. Control engineers routinely build and use models for controlling large
and complex plants — aircraft, power stations, oil refineries, etc. — but they use
techniques very different from those of the computer scientists who developed
classical artificial intelligence. We have seen that the brain also uses models in a
variety of contexts and for a variety of purposes, but no one nowadays seriously
believes that the brain’s models consist solely of symbols processed through symbolic
manipulation. It will be impossible to progress to intelligence and consciousness
without the use of models, but the models must be of types appropriate to their
applications, and it is certain that there will have to be several different types of
model used within a single system. To rule out the use of models altogether is
probably a more serious error than to be mistaken in the choice of model; the pioneers
were at least half right, and we will not improve on their efforts unless and until we
acknowledge this.

One of the strengths of the embodied Al community is their acceptance of
biological inspiration. As it happens, some of the most recent data coming from
consciousness studies give us some intriguing information about the representation of
the visual world. It is clear to every normally sighted adult that the world we see is
immensely rich in information, and that we are able to apprehend this information as
an enormously detailed unity, a task which would challenge any artificial system.
Unfortunately, this is another of the illusions perpetrated by consciousness, and is
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usually referred to as ‘The Grand Illusion’ (Noé 2002); in fact, as Ngrretranders puts
it in the passage quoted earlier, “...our conscious awareness contains almost no
information but is perceived as if it were vastly rich in information”. Our brain does
not contain a detailed and fully featured representation of the external world, but it
does contain the information needed to gather that information very rapidly using the
senses. The world is still its own best model, but consciousness studies appear to tell
us that the best way to use that model is with the aid of a much less detailed model
that guides the sensors in interrogating the world. Should embodied Al investigate
this strategy? And do the internal models involved in consciousness really operate at
this low level of detail? This is an open question; it is at least possible that they do.

13 Machine Consciousness

Whatever the mechanism of consciousness turns out to be, it is clear that there is a
movement towards investigating consciousness by building systems and seeing how
closely they match the human data. This parallels Newell and Simon’s programme in
relation to intelligence almost fifty years ago. There have been several international
workshops on the subject (see www.machineconsciousness.org); there are regular
sessions at consciousness conferences; the first books have started to appear
(Haikonen 2003, Holland 2003a); and there are funded projects.

Already, certain themes are emerging. The study of imagination in robots,
pioneered by Stein (1987), is beginning to take off — at a recent workshop, delegates
interested in this were the largest single group. Aleksander’s work, using analogues of
the primate visual system on a mobile robot, is perhaps the best known. (Aleksander
et al: 1999, 2001). Other groups are investigating unembodied software agents
(Franklin 2003) and electronic hardware implementations (Haikonen 2003).

Given the close association between the modern view of consciousness,
embodiment, and modelling, and the early involvement of roboticists in the emerging
field of machine consciousness, it seems likely that embodied artificial intelligence
will at least contribute to this field, and may eventually dominate or subsume it. Its
role would be exactly as Newell and Simon considered the role of their enterprise to
be in 1959: the explanation of complex human behaviour. But it will be important to
enter the field with a good enough background in consciousness studies, because the
old view of consciousness is dead in the water. We have no understanding of the
functional benefits of consciousness — but in this field we are in possession of some
ideas that may be fundamental to its emergence: embodiment, and modelling. We
should promote these ideas vigorously, because there is at least some danger that
Good Old Fashioned Artificial Intelligence may see machine consciousness as an
attractive piece of unexplored territory. And, like the psychologists referred to by
Newell and Simon, we don’t want to turn the clock back.
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Abstract. Robotics, artificial intelligence and, in general, any activity involv-
ing computer simulation and engineering relies, in a fundamental way, on
mathematics. These fields constitute excellent examples of how mathematics
can be applied to some area of investigation with enormous success. This, of
course, includes embodied oriented approaches in these fields, such as Embod-
ied Artificial Intelligence and Cognitive Robotics. In this chapter, while fully
endorsing an embodied oriented approach to cognition, | will address the ques-
tion of the nature of mathematics itself, that is, mathematics not as an applica-
tion to some area of investigation, but as a human conceptual system with a
precise inferential organization that can be investigated in detail in cognitive
science. The main goal of this piece is to show, using techniques in cognitive
science such as cognitive semantics and gestures studies, that concepts and hu-
man abstraction in general (as it is exemplified in a sublime form by mathe-
matics) is ultimately embodied in nature.

1 A Challengeto Embodiment: The Nature of Mathematics

Mathematics is a highly technical domain, developed over several millennia, and
characterized by the fact that the very entities that constitute what Mathematics is are
idealized mental abstractions. These entities cannot be perceived directly through the
senses. Even, say, a point, which is the simplest entity in Euclidean geometry, can’t
be actually perceived. A point, as defined by Euclid is a dimensionless entity, an
entity that has only location but no extension. No super-microscope will ever be able
to allow us to actually perceive a point. A point, after all, with its precision and clear
identity, is an idealized abstract entity. The imaginary nature of mathematics becomes
more evident when the entities in question are related to infinity where, because of the
finite nature of our bodies and brains, no direct experience can exist with the infinite
itself. Yet, infinity in mathematics is essential. It lies at the very core of many funda-
mental concepts such as limits, least upper bounds, topology, mathematical induction,
infinite sets, points at infinity in projective geometry, to mention only a few. When
studying the very nature of mathematics, the challenging and intriguing question that

F. lida et al. (Eds.): Embodied Artificial Intelligence, LNAI 3139, pp. 54-73, 2004.
© Springer-Verlag Berlin Heidelberg 2004
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comes to mind is the following: if mathematics is the product of human ideas, how
can we explain the nature of mathematics with its unique features such as precision,
objectivity, rigor, generalizability, stability, and, of course, applicability to the real
world? Such question doesn’t represent a real problem for approaches inspired in
platonic philosophies, which rely on the existence of transcendental worlds of ideas
beyond human existence. But this view doesn’t have any support based on scientific
findings and doesn’t provide any link to current empirical work on human ideas and
conceptual systems (it may be supported, however, as a matter of faith, not of science,
by many Platonist scientists and mathematicians). The question doesn’t pose major
problems to purely formalist philosophies either, because in that worldview mathe-
matics is seen as a manipulation of meaningless symbols. The question of the origin
of the meaning of mathematical ideas doesn’t even emerge in the formalist arena. For
those studying the human mind scientifically, however (e.g., cognitive scientists), the
question of the nature of mathematics is indeed a real challenge, especially for those
who endorse an embodied oriented approach to cognition. How can an embodied
view of the mind give an account of an abstract, idealized, precise, sophisticated and
powerful domain of ideas if direct bodily experience with the subject matter is not
possible?

In Where Mathematics Comes From, Lakoff and Nufiez (2000) give some prelimi-
nary answers to the question of the cognitive origin of mathematical ideas. Building
on findings in mathematical cognition, and using mainly methods from Cognitive
Linguistics, a branch of Cognitive Science, they suggest that most of the idealized
abstract technical entities in Mathematics are created via human cognitive mecha-
nisms that extend the structure of bodily experience (thermic, spatial, chromatic, etc.)
while preserving the inferential organization of these domains of bodily experience.
For example, linguistic expressions such as “send her my warm helloes” and “the
teacher was very cold to me” are statements that refer to the somewhat abstract do-
main of Affection. From a purely literal point of view, however, the language used
belongs to the domain of Thermic experience, not Affection. The meaning of these
statements and the inferences one is able to draw from them is structured by precise
mappings from the Thermic domain to the domain of Affection: Warmth is mapped
onto presence of affection, Cold is mapped onto lack of affection, X is warmer than Y
is mapped onto X is more affectionate than Y, and so on. The ensemble of inferences
is modeled by one conceptual metaphorical mapping, which in this case is called
AFFECTION IS WARMTH!. Research in Cognitive Linguistics has shown that these
phenomena are not simply about “language,” but rather they are about thought. In
cognitive science the complexities of such abstract and non/literal phenomena have
been studied through mechanisms such as conceptual metaphors (Lakoff & Johnson,
1980; Sweetser, 1990; Lakoff, 1993; Lakoff & Nuifiez, 1997; Nufiez & Lakoff, in
press; Nufiez, 1999, 2000), conceptual blends (Fauconnier & Turner, 1998, 2002;
Nufiez, in press), conceptual metonymy (Lakoff & Johnson, 1980), fictive motion and
dynamic schemas (Talmy, 1988, 2003), and aspectual schemas (Narayanan, 1997).

! Following a convention in Cognitive Linguistics, the name of a conceptual metaphorical
mapping is capitalized.
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Based on these findings Lakoff and NUfiez (2000) analyzed many areas in mathemat-
ics, from set theory to infinitesimal calculus, to transfinite arithmetic, and showed
how, via everyday human embodied mechanisms such as conceptual metaphor and
conceptual blending, the inferential patterns drawn from direct bodily experience in
the real world get extended in very specific and precise ways to give rise to a new
emergent inferential organization in purely imaginary domains’. For the remainder of
this chapter we will be building on these results as well as on the corresponding em-
pirical evidence provided by the study of human speech-gesture coordination. Let us
now consider a few mathematical examples.

2 Limits, Curves, and Continuity

Through the careful analysis of technical books and articles in mathematics, we can
learn a good deal about what structural organization of human everyday ideas have
been used to create mathematical concepts. For example, let us consider a few state-
ments regarding limits in infinite series, equations of curves in the Cartesian plane,
and continuity of functions, taken from mathematics books such as the now classic
What is Mathematics? by R. Courant & H. Robbins (1978).
a) Limits of infinite series
In characterizing limits of infinite series, Courant & Robbins write:

“We describe the behavior of s, by saying that the sum s, approaches the limit 1 as

n tends to infinity, and by writing

1=1/2+1/2*+ 1/2° + 1/2* + ...” (p. 64, our emphasis)
Strictly speaking, this statement refers to a sequence of discrete and motionless partial
sums of s, (real numbers), corresponding to increasing discrete and motionless values
taken by n in the expression 1/2" where n is a natural number. If we examine this
statement closely we can see that it describes some facts about numbers and about the
result of discrete operations with numbers, but that there is no motion whatsoever
involved. No entity is actually approaching or tending to anything. So, why then did
Courant and Robbins (or mathematicians in general, for that matter) use dynamic
language to express static properties of static entities? And what does it mean to say
that the “sum s, approaches,” when in fact a sum is simply a fixed number, a result of
an operation of addition?
b) Equations of lines and curves in the Cartesian Plane
Regarding the study of conic sections and their treatment in analytic geometry, Cou-
rant & Robbins’ book says:

“The hyperbola approaches more and more nearly the two straight lines gx + py
= 0 as we go out farther and farther from the origin, but it never actually
reaches these lines. They are called the asymptotes of the hyperbola.” (p. 76,
our emphasis).

2 The details of how conceptual metaphor and conceptual blending work go beyond the scope
of this piece. For a general introduction to these concepts see Lakoff & Nufiez (2000, chap-
ters 1-3), and the references given therein.
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And then the authors define hyperbola as “the locus of all points P the difference of
whose distances to the two points F(V(p® + ¢f), 0) and F’(-V(p* + ), 0) is 2p.” (p. 76,
original emphasis).

Strictly speaking, the definition only specifies a “locus of all points P” satisfying
certain properties based exclusively on arithmetic differences and distances. Again,
no entities are actually moving or approaching anything. There are only statements
about static differences and static distances. Besides, as Figure 1 shows, the authors
provide a graph of the hyperbola in the Cartesian Plane (bottom right), which in itself
is a static illustration that doesn’t have the slightest insinuation of motion (like sym-
bols for arrows, for example). The figure illustrates the idea of locus very clearly, but
it says nothing about motion. Moreover the hyperbola has two distinct and separate
loci. Exactly which one of the two is then “the” moving agent (3" person singular) in
the authors’ statement “the hyperbola approaches more and more nearly the two
straight lines gx = py = 0 as we go out farther and farther from the origin”?
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Fig. 1. Original text analyzing the hyperbola as published in the now classic book What is
Mathematics? by R. Courant & H. Robbins (1978).

c) _Continuity

Later in the book, the authors analyze cases of continuity and discontinuity of trigo-
nometric functions in the real plane. Referring to the function f(x) = sin 1/x (whose
graph is shown in Figure 2) they say: “... since the denominators of these fractions
increase without limit, the values of x for which the function sin(1/x) has the values 1,
-1, 0, will cluster nearer and nearer to the point x = 0. Between any such point and the
origin there will be still an infinite number of oscillations of the function” (p. 283, our
emphasis).



58 R. Nufiez

Fig. 2. The graph of the function f(x) = sin 1/x.

Once again, if, strictly speaking, a function is a mapping between elements of a set
(coordinate values on the x-axis) with one and only one of the elements of another set
(coordinate values on the y-axis), all what we have is a static correspondence between
points on the x-axis with points on the y-axis. How then can the authors (or mathema-
ticians in general) speak of “oscillations of the function,” let alone an infinite number

of them?

These three examples show how ideas and concepts are described, defined, illus-
trated, and analyzed in mathematics books. You can pick your favorite mathematics
books and you will see similar patterns. You will see them in topology, fractal ge-
ometry, space-filling curves, chaos theory, and so on. Here, in all three examples,
static numerical structures are involved, such as partial sums, geometrical loci, and
mappings between coordinates on one axis with coordinates on another. Strictly
speaking, absolutely no dynamic entities are involved in the formal definitions of
these terms. So, if no entities are really moving, why do authors speak of “approach-
ing,” “tending to,” “going farther and father,” and “oscillating”? Where is this motion
coming from? What does dynamism mean in these cases? What role is it playing (if
any) in these statements about mathematics facts?

We will first look at pure mathematics to see whether we can find answers to these
questions. Then, in order to get some deeper insight into them, we will turn into hu-
man language and real-time speech-gesture coordination.

3 Looking at Pure Mathematics

Among the most fundamental entities and properties the above examples deal with
are the notion of real number and continuity. Let us look at how pure mathematics
defines and provides the inferential organization of these concepts.

In pure mathematics, entities are brought to existence via formal definitions, for-
mal proofs (theorems) or by axiomatic methods (i.e., by declaring the existence of
some entity without the need of proof. For example, in set theory the axiom of infin-
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ity assures the existence of infinite sets. Without that axiom, there are no infinite
sets). In the case of real numbers, ten axioms taken together, fully characterize this
number system and its inferential organization (i.e., theorems about real numbers).
The following are the axioms of the real numbers.
1. Commutative laws for addition and multiplication.
. Associative laws for addition and multiplication.
. The distributive law.
. The existence of identity elements for both addition and multiplication.
. The existence of additive inverses (i.e., negatives).
. The existence of multiplicative inverses (i.e., reciprocals).
. Total ordering.
. If xand y are positive, S0 is X + Y.

9. If xand y are positive, SO is X e Y.

10. The Least Upper Bound axiom.

The first 6 axioms provide the structure of what is called a field for a set of numbers
and two binary operations. Axioms 7 through 9, assure ordering constraints. The first
nine axioms fully characterize ordered fields, such as the rational numbers with the
operations of addition and multiplication. Up to here we have already a lot of struc-
ture and complexity. For instance we can characterize and prove theorems about all
possible numbers that can be expressed as the division of two whole numbers (i.e.,
rational numbers). With the rational numbers we can describe with any given (finite)
degree of precision the proportion given by the perimeter of a circle and its diameter
(e.g., 3.14; 3.1415; etc.). We can also locate along a line (according to their magni-
tude) any two different rational numbers and be sure (via proof) that there will always
be infinitely many more rational numbers between them (a property referred to as
density). With the rational numbers, however, we can’t “complete” the points on this
line, and we can’t express with infinite exactitude the magnitude of the proportion
mentioned above (m = 3.14159 ...). For this we need the full extension of the real
numbers. In axiomatic terms, this is accomplished by the tenth axiom: the Least Up-
per Bound axiom. All ten axioms characterize a complete ordered field.

In what concerns our original question of where is motion coming from in the
above mathematical statements about infinite series and continuity, we don’t find any
answer in the first nine axioms of real numbers. All nine axioms simply specify the
existence of static properties regarding binary operations and their results, and prop-
erties regarding ordering. There is no explicit or implicit reference to motion in these
axioms. Since what makes a real number a real number (with its infinite precision) is
the Least Upper Bound axiom, it is perhaps this very axiom that hides the secret of
motion we are looking for. Let’s see what this axiom says:

10. Least Upper Bound axiom: every nonempty set that has an upper bound has a

least upper bound.

And what exactly is an upper bound and a least upper bound? This is what pure
mathematics says:

Upper Bound

b is an upper bound for Sif

x < b, forevery xin S

O~NO OB WN
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Least Upper Bound
b, is a least upper bound for Sif

* b, is an upper bound for S and

* b, < b for every upper bound b of S

Once again, all what we find are statements about motionless entities such as uni-
versal quantifiers (e.g., for every x; for every upper bound b of S), membership rela-
tions (e.g., for every xin §), greater than relationships (e.g., X< b; b, < b), and so on.
In other words, there is absolutely no indication of motion in the Least Upper Bound
axiom, or in any of the other nine axioms. In short, the axioms of real numbers, which
are supposed to completely characterize the “truths” (i.e., theorems) of real numbers
don’t tell us anything about a sum “approaching” a number, or a number “tending to”
infinity (whatever that may mean!).

Let’s try continuity. What does pure mathematics say about it?

Mathematics textbooks define continuity for functions as follows:
« A function f is continuous at a number a if the following three conditions
are satisfied:
1. fis defined on an open interval containing a,
2. lim__,_ f(x) exists, and
3. lim_,, f(x) = f(a).
Where by lim__,_ f(x) what is meant is the following:
Let a function f be defined on an open interval containing a, except
possibly at a itself, and let L be a real number. The statement
lim_, f(X)=L
means that V € > 0,38 > 0,
such that if 0 < [x-a|< 3,
then |f(x) L] <e
As we can see, pure formal mathematics defines continuity in terms of limits, and
limits in terms of
e  static universal and existential quantifiers predicating on static numbers (e.g.,
Ve>0,36>0),and
e on the satisfaction of certain conditions which are described in terms of mo-
tionless arithmetic difference (e.g., |f(x) - L|) and static smaller than rela-
tions (e.g., 0 < |x-al< d).
That’s it. Once again, these formal definitions don’t tell us anything about a sum
“approaching” a number, or a number “tending to” infinity, or about a function “os-
cillating” between values (let alone doing it infinitely many times, as in the function
f(x) = sin 1/X).

But this shouldn’t be a surprise. Lakoff & Nufiez (2000), using techniques from
cognitive linguistics showed what well-known contemporary mathematicians had
already pointed out in more general terms (Hersh, 1997; Henderson, 2001):

* The structure of human mathematical ideas, and its inferential organization, is
richer and more detailed than the inferential structure provided by formal defi-
nitions and axiomatic methods. Formal definitions and axioms neither fully for-
malize nor generalize human concepts.
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We can see this with a relatively simple example taken from Lakoff & Nufiez (2000).
Consider the function f(x) = x sin 1/x whose graph is depicted in Figure 3.

[ xsin 1/x forx=0
f(x) =1
Lo forx=0

Fig. 3. The graph of the function f(x) = x sin 1/x.

According to the € - & definition of continuity given above, this function is con-
tinuous at every point. For all x, it will always be possible to find the specified €’s and
&’s necessaries to satisfy the conditions for preservation of closeness. However, ac-
cording to the everyday notion of continuity —natural continuity (NGfiez & Lakoff,
1998)— as it was used by great mathematicians such as Kepler, Euler, and Newton
and Leibniz, the inventors of infinitesimal calculus in the 17th Century, this function
is not continuous. According to the inferential organization of natural continuity,
certain conditions have to be met. For instance, in a naturally continuous line we are
supposed to be able to tell how long the line is between to points. We are also sup-
posed to be able to describe essential components of the motion of a point along that
line. With this function we can’t do that. Since the function “oscillates” infinitely
many times as it “approaches” the point (0, 0) we can’t really tell how long the line is
between two points located on the left and right sides of the plane. Moreover, as the
function approaches the origin (0, 0) we can’t tell, say, whether it will “cross” from
the right plane to the left plane “going down” or “going up.” This function violates
these basic properties of natural continuity and therefore it is not continuous. The
function f(x) = x sin 1/x is thus € - & continuous but it is not naturally continuous. The
point is that the formal € - 6 definition of continuity doesn’t capture the inferential
organization of the human everyday notion of continuity, and it doesn’t generalize the
notion of continuity either.

The moral here is that what is characterized formally in mathematics leaves out a
huge amount of inferential organization of the human ideas that constitute mathe-
matics. As we will see, this is precisely what happens with the dynamic aspects of the
expressions we saw before, such as “approaching,” “tending to,” “going farther and
farther,” “oscillating,” and so on. Motion, in those examples, is a genuine and consti-
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tutive manifestation of the nature of mathematical ideas. In pure mathematics, how-
ever, motion is not captured by formalisms and axiomatic systems.

4 Embodied Cognition

It is now time to look, from the perspective of embodied cognition, at the questions
we asked earlier regarding the origin of motion in the above mathematical ideas. In
the case of limits of infinite series, motion in “the sum s, approaches the limit 1 as n
tendsto infinity” emerges metaphorically from the successive values taken by n in the
sequences as a whole. It is beyond the scope of this chapter to go into the details of
the mappings involved in the various underlying conceptual metaphors that provide
the required dynamic inferential organization (for details see Lakoff & Nufiez, 2000).
But we can at least point out to some of the many conceptual metaphors and me-
tonymies?® involved.

e  There are conceptual metonymies in cases such as a partial sum standing for
the entire infinite sum;

e there are conceptual metaphors in cases where we conceptualize the sequence
of these metonymical sums as a unique trajector moving in space (as it is in-
dicated by the use of the 3” person singular in the sum s, approaches);

e there are conceptual metaphors for conceiving infinity as a single location in
space such that a metonymical n (standing for the entire sequence of values)
can “tend to;”

e there are conceptual metaphors for conceiving 1 (not as a mere natural num-
ber but as an infinitely precise real number) as the result of the infinite sum;
and so on.

Notice that none of these expressions can be literal. The facts described in these sen-
tences don’t exist in any real perceivable world. They are metaphorical in nature. It is
important to understand that these conceptual metaphors and metonymies are not
simply “noise” added on top of pre-defined formalisms. They are in fact constitutive
of the very embodied ideas that make mathematical ideas possible. It is the inferential
organization provided by our embodied understanding of “approaching” and “tending
to” that is at the core of these mathematical ideas.

In the case of the hyperbola, the moving agent is one holistic object, the hyperbola
in the Real plane. This object, which has two distinctive separate parts, is conceptu-
alized as one single trajector metaphorically moving away from the origin. Via con-
ceptual metonymies and metaphors similar to the ones we saw for the case of infinite

3 A conceptual metonymy is a cognitive mechanism that allow us to conceive a part of a
whole standing for the whole, as when we say Washington and Paris have quite different
views on these issues, meaning the governments of two entire nations, namely, United States
and France.

4 In cognitive linguistics, “trajector” is a technical term used to refer to the distinct entity that
performs the motion traced by a trajectory. The trajector moves against a background called
“landscape.”
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series, the hyperbola is conceived as a trajector tracing the line, which describes the
geometrical locus of the hyperbola itself. In this case, of course, because we are
dealing with real numbers, the construction is done on non-countable infinite (>X )
discrete real values for x, which are progressively bigger in absolute terms. The di-
rection of motion is stated as moving away from the origin of the Cartesian coordi-
nates, and it takes place in both directions of the path schemas defined by the two
branches of the hyperbola, simultaneoudly. The hyperbola not “reaching” the asymp-
totes is the cognitive way of characterizing the mathematically formalized fact that
there are no values for x and y that satisfy equations

gx+ py = 0 and (X/p°) - (Y'/d) = 1
Notice that characterizing the hyperbola as “not reaching” the asymptotes provides
the same extensionality (i.e., it gives the same resulting cases) as saying that there is
an “absence of values” satisfying the above equations. The inferential organization of
these two cases, however, is cognitively very different>.

Finally, in what concerns our “oscillating” function example, the moving object is
again one holistic object, the trigonometric function in the Real plane, constructed
metaphorically from non-countable infinite (> &) discrete real values for x, which are
progressively smaller in absolute terms. In this case motion takes place in a specific
manner, towards the origin from two opposite sides (i.e., for negative and positive
values of x) and always between the valuesy =1 and y = -1. As we saw, a variation of
this function, f(x) = x sin(x), reveals deep cognitive incompatibilities between the
dynamic notion of continuity implicit in the example above and the static €-6 defini-
tion of continuity coined by Weierstrass in the second half of the 19" century (based
on quantifiers and discrete Real numbers) and which has been adopted ever since as
“the” definition of what Continuity really is (NUfez & Lakoff, 1998; Lakoff &
Nufiez, 2000). These deep cognitive incompatibilities between dynamic-wholistic
entities and static-discrete ones may explain important aspects underlying the diffi-
culties encountered by students all over the world when learning the modern technical
version of the notions of limits and continuity (NUfiez, Edwards, and Matos, 1999).

5 Fictive Motion

Now that we are aware of the metaphorical (and metonymical nature) of the mathe-
matical ideas mentioned above, | would like to analyze more in detail the dynamic
component of these ideas. From where do these ideas get motion? What cognitive
mechanism is allowing us to conceive static entities in dynamic terms? The answer is
fictive motion.

5 In order to clarify this point, consider the following two questions: (a) What Alpine Euro-
pean country does not belong to the European Union?, and (b) What is the country whose
currency is the Swiss Franc? The extensionality provided by the answers to both questions is
the same, namely, the country called “Switzerland.” This, however, doesn’t mean that we
have to engage in the same cognitive activity in order to correctly answer these questions.
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Fictive motion is a fundamental embodied cognitive mechanism through which we
unconsciously (and effortlessly) conceptualize static entities in dynamic terms, as
when we say the road goes along the coast. The road itself doesn’t actually move
anywhere. It is simply standing still. But we may conceive it as moving “along the
coast.” Fictive motion was first studied by Len Talmy (1996), via the analysis of
linguistic expressions taken from everyday language in which static scenes are de-
scribed in dynamic terms. The following are linguistic examples of fictive motion:

e  The Equator passes through many countries
The boarder between Switzerland and Germany runs along the Rhine.

The California coast goes all the way down to San Diego

After Corvisart, line 6 reaches Place d’ltalie.

Right after crossing the Seine, line 4 comesto Chatélet.

The fence stopsright after the tree.

Unlike Tokyo, in Paris there is no metro line that goes around the city.

Motion, in all these cases, is fictive, imaginary, not real in any literal sense. Not
only these expressions use verbs of action, but they also provide precise descriptions
of the quality, manner, and form of motion. In all cases of fictive motion there is a
trajector (the moving agent) and a landscape (the background space in which the
trajector moves). Sometimes the trajector may be a real object (e.g., the road goes;
the fence stops), and sometimes it is an imaginary entity (e.g., the Equator passes
through; the boarder runs). In fictive motion, real world trajectors don’t move but
they have the potential to move or the potential to enact movement (e.g., a car mov-
ing along that road). In Mathematics proper, however, the trajector has always a
metaphorical component. That is, the trajector as such can’t be literally capable or
incapable of enacting movement, because the very nature of the trajectory is imagined
via metaphor (NUfiez, 2003). For example, a point in the Cartesian Plane is an entity
that has location (determined by its coordinates) but has no extension. So when we
say “point P moves from A to B” we are ascribing motion to a metaphorical entity that
only has location. First, as we saw earlier, entities which have only location (i.e.,
points) don’t exist in the real world, so, as such, they don’t have the potential to move
or not to move in any literal sense. They simply don’t exist in the real world. They are
metaphorical entities. Second, literally speaking, point A and point B are distinct
locations, and no point can change location while preserving its identity. That is, the
trajector (point P, uniquely determined by its coordinates) can’t preserve its identity
throughout the process of motion from A to B, since that would mean that it is
changing the very properties that are defining it, namely, its coordinates.

We now have a basic understanding of how conceptual metaphor and fictive mo-
tion work, so we are in a position to see the embodied cognitive mechanisms under-
lying the mathematical expressions like the ones we saw earlier. Here we have similar
expressions:

e  sin 1/x oscillates more and more as X approaches zero

e g(x) never goesbeyond 1

o |f there exists a number L with the property that f(x) gets closer and closer to

L as x gets larger and larger; lim _,.. f(x) = L.
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In these examples Fictive Motion operates on a network of precise conceptual meta-
phors, such as NUMBERS ARE LOCATIONS IN SPACE (which allows us to conceive
numbers in terms of spatial positions), to provide the inferential structure required to
conceive mathematical functions as having motion and directionality. Conceptual
metaphor generates a purely imaginary entity in a metaphorical space, and fictive
motion makes it a moving trajector in this metaphorical space. Thus, the progres-
sively smaller numerical values taken by x which determine numerical values of sin
1/x, are via the conceptual metaphor NUMBERS ARE LOCATIONS IN SPACE conceptu-
alized as spatial locations. The now metaphorical spatial locus of the function (i.e.,
the “line” drawn on the plane) now becomes available for fictive motion to act upon.
The progressively smaller numerical values taken by x (now metaphorically concep-
tualized as locations progressively closer to the origin) determine corresponding
metaphorical locations in space for sin 1/x. In this imaginary space, via conceptual
metaphor and fictive motion now sin 1/x can “oscillate” more and more as X “ap-
proaches” zero.

In a similar way the infinite precision of real numbers themselves can be conceived
as limits of sequences of rational numbers, or limits of sequences of nested intervals.
Because, as we saw, limits have conceptual metaphor and fictive motion built in, we
can now see the fundamental role that these embodied mechanisms play in the con-
stitution of the very nature of the real numbers themselves.

6 Dead Metaphors?

Up to now, we have analyzed some mathematical ideas through methods in cognitive
linguistics, such as conceptual metaphor, conceptual metonymy, and fictive motion.
We have studied the inferential organization modeling linguistic expressions. But so
far no much has been said of actual people speaking, writing, explaining, learning, or
gesturing in real-time when involved in mathematical activities. The analysis so far
has been almost exclusively at the level of written and oral linguistic expressions. We
must know whether there is any psychological (and presumably neurological) reality
underlying these linguistics expressions. The remaining task now is to show that all
these cases are not, as some scholars have suggested, mere instances of so-called dead
metaphors, that is, expressions that once in the past had a metaphorical dimension but
that now, after centuries of usage, have lost their metaphorical component becoming
“dead.” Dead metaphorical expressions are those that have lost their psychological
(and cognitive semantic) original reality, becoming simply new “lexical items.” Per-
haps in the cases we have seen in mathematics, what once was a metaphorical expres-
sion has now become a literal expression whose meaningful origin speakers of Eng-
lish don’t know anymore (very much like so many English words whose Latin or
Greek etymology may have been known by speakers at a certain point in history, but
whose original meaning is no longer evoked by speakers today). Is this what is hap-
pening to cases such as “approaching” limits, “oscillating” functions, or hyperbolae
not “reaching” the asymptotes? Maybe, after all, all what we have in the mathematical
expressions we have examined, is simply a story of dead metaphors, with no psycho-
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logical (or neurological) reality whatsoever. As we will see, however, the study of
human gesture provides embodied convergent evidence showing that this is not the
case at all. Gesture studies, via a detailed investigation of real-time cognitive and
linguistic production, bodily motion (mainly hands and arms), and voice inflection,
show that the conceptual metaphors and fictive motion involved in the mathematical
ideas analyzed above, far from being dead, do have a very embodied psychological
(and presumably neurological) reality.

7 Gesture as Cognition

Human beings from all cultures around the world gesture when they speak. The
philosophical and scientific study of human language and thought has largely ignored
this simple but fundamental fact. Human gesture constitutes the forgotten dimension
of thought and language. Chomskian linguistics, for instance, overemphasizing syn-
tax, saw language mainly in terms of abstract grammar, formalisms, and combinato-
rics, you could study by looking at written statements. In such a view there was sim-
ply no room for meaningful (semantic) “bodily production” such as gesture. In main-
stream experimental psychology gestures were left out, among others, because being
produced in a spontaneous manner, it was very difficult to operationalize them, mak-
ing rigorous experimental observation on them extremely difficult. In mainstream
cognitive science, which in its origins was heavily influenced by classic artificial
intelligence, there was simply no room for gestures either. Cognitive science and
artificial intelligence were heavily influenced by the information-processing paradigm
and what was taken to be essential in any cognitive activity was a set of body-less
abstract rules and the manipulation of physical symbols governing the processing of
information. In all these cases, gestures were completely ignored and left out of the
picture that defined what constituted genuine subject matters for the study of the
mind. At best, gestures were considered as a kind of epiphenomenon, secondary to
other more important and better-defined phenomena.

But in the last decade or so, this scenario has changed in a radical way with the
pioneering work of A. Kendon (1980), D, McNeill (1992), S. Goldin-Meadow & C.
Mylander (1984), and many others. Research in a large variety of areas, from child
development, to neuropsychology, to linguistics, and to anthropology, has shown the
intimate link between oral and gestural production. Finding after finding has shown,
for instance, that gestures are produced in astonishing synchronicity with speech, that
in children they develop in close relation with speech, and that brain injuries affecting
speech production also affect gesture production. The following is a (very summa-
rized) list of nine excellent sources of evidence supporting (1) the view that speech
and gesture ae in reality two facets of the same cognitive linguistic reality, and (2) an
embodied approach for understanding language, conceptual systems, and high-level
cognition:

1) Speech accompanying gesture is universal. This phenomenon is manifested in all
cultures around the world. Gestures then provide a remarkable “back door” to lin-
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guistic cognition (McNeill, 1992; Iverson & Thelen 1999; Nufiez & Sweetser,
2001).

2) Gestures are less monitored than speech, and they are, to a great extent, uncon-
scious. Speakers are often unaware that they are gesturing at all (McNeill, 1992)

3) Gestures show an astonishing synchronicity with speech. They are manifested in a
millisecond-precise synchronicity, in patterns which are specific to a given lan-
guage (McNeill, 1992).

4) Gestures can be produced without the presence of interlocutors. Studies of people
gesturing while talking on the telephone, or in monologues, and studies of conver-
sations among congenitally blind subjects have shown that there is no need of
visible interlocutors for people to gesture (Iverson & Goldin-Meadow, 1998).

5) Gestures are co-processed with speech. Studies show that stutterers stutter in ges-
ture too, and that impeding hand gestures interrupts speech production (Mayberry
and Jaques, 2000).

6) Hand signs are affected by the same neurological damage as speech. Studies in
neurobiology of sign language show that left hemisphere damaged signers mani-
fest similar phonological and morphological errors as those observed in speech
aphasia (Hickok, Bellugi, and Klima, 1998).

7) Gesture and speech develop closely linked. Studies in language acquisition and
child development show that speech and gesture develop in parallel (Iverson &
Thelen 1999; Bates & Dick, 2002).

8) Gesture provide complementary content to speech content. Studies show that
speakers synthesize and subsequently cannot distinguish information taken from
the two channels (Kendon, 2000).

9) Gestures are co-produced with abstract metaphorical thinking. Linguistic meta-
phorical mappings are paralleled systematically in gesture (McNeill, 1992; Cienki,
1998; Sweetser, 1998; Nlfiez & Sweetser, 2001).

In all these studies, a careful analysis of important parameters of gestures such as

handshapes, hand and arm positions, palm orientation, type of movements, trajecto-

ries, manner, and speed, as well as a careful examination of timing, indexing, preser-
vation of semantics, and the coupling with environmental features, give deep insight
into human thought®. An important feature of gestures is that they have three well-
defined phases called preparation, stroke, and retraction (McNeill, 1992). The stroke
is in general the fastest part of the gesture’s motion, and it tends to be highly syn-
chronized with speech accentuation and semantic content. The preparation phase is
the motion that precedes the stroke (usually slower), and the retraction phase is the
motion observed after the stroke has been produced (usually slower as well), when
the hand goes back to a resting position or to whatever activity it was engaged in.
With these tools from gesture studies and cognition, we can now analyze mathe-
matical expressions like the ones we saw before, but this time focusing on the gesture
production of the speaker. For the purposes of this chapter, an important distinction

6 An analysis of the various dimensions and methodological issues regarding the scientific
study of gestures studies is beyond the scope of this chapter. For details see references men-
tioned above.
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we need to make concerns the gestures that refer to real objects in the real world, and
gestures that refer to some abstract idea that in itself doesn’t exist in the real world.
An example of the first group is shown in Figure 4, which shows renowned physicist
Professor Richard Feynman giving a lecture on physics of particles at Cornell Univer-
sity many years ago. In this sequence he is talking about particles moving in all di-
rections at very high speeds (Figure 4, a through e), and a few milliseconds later he
completes his utterance by saying “once in a while hit” (Figure 4f). The action shown
in the first five pictures correspond to the gesture characterizing the random move-
ments of particles at high speeds. The precise finger pointing shown in figure 4f oc-
curs when he says “once in a while hit” (the stroke of the gesture). The particle being
indexed by the gesture is quite abstract and idealized, in the sense that it doesn’t pre-
serve some properties of the real referent, such as the extremely high speed at which
particles move, for instance. But the point here is that although Prof. Feynman’s talk
was about a very abstract domain (i.e., particle physics), it is still the case that with
his finger he is indexing a “particle,” an object with location, extension, and mass,
which does exist in the real world. The trajector in this dynamic scene is, an ex-
tremely small and fast object, but nonetheless a real entity in the real world.

e

Fig. 4. Professor Richard Feynman giving a lecture on physics. He is talking about particles
moving in all directions at very high speeds (a through €), which “once in a while hit” (f).

Now, the gestures we are about to analyze below are similar in many respects, but
they are even more abstract. In these cases the entities that are indexed with the vari-
ous handshapes are purely imaginary entities, like points and numbers in mathemat-
ics. Figure 5, for instance shows a professor of mathematics lecturing on convergent
sequences in a university level class. In this particular situation, he is talking about a
case in which the real values of an infinite sequence do not get closer and closer to a
single real value as n increases, but “oscillate” between two fixed values. His right
hand, with the palm towards his left, has a handshape called baby O in American Sign
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Language and in gesture studies, where the index finger and the thumb are touching
and are slightly bent while the other three fingers are fully bent. In this gesture the
touching tip of the index and the thumb are metaphorically indexing a metonymical
value standing for the values in the sequence as n increases (it is almost as if the sub-
ject is carefully holding a very tiny object with those two fingers). Holding that fixed
handshape, he moves his right arm horizontally back and forth while he says “oscil-
lating.”

Fig. 5. A professor of mathematics lecturing on convergent sequences in a university level
class. Here he is referring to a case in which the real values of a sequence “oscillate” (horizon-

tally).

Hands and arms are essential body parts involved in gesturing. But often it is also
the entire body that participates in enacting the inferential structure of an idea. In the
following example (Figure 6) a professor of mathematics is lecturing on some im-
portant notions of calculus at a university level course. In this scene he is talking
about a particular theorem regarding monotone sequences.

As he is talking about an unbounded monotone sequence, he is referring to the im-
portant property of “going in one direction.” As he says this he is producing
frontwards iterative unfolding circles with his right hand, and at the same time he is
walking frontally, accelerating at each step (Figure 6a through 6e). His right hand,
with the palm toward his chest, displays a shape called tapered O (Thumb relatively
extended and touching the upper part of his extended index finger bent in right angle,
like the other fingers), which he keeps in a relatively fixed position while doing the
iterative circular movement. A few milliseconds later he completes the sentence by
saying “it takes off to infinity” at the very moment when his right arm is fully ex-
tended and his hand shape has shifted to an extended shape called B spread with a
fully (almost over) extension, and the tips of the fingers pointing frontwards at eye-
level.

It is important to notice that in both cases the blackboard is full of mathematical
expressions containing formalisms like the ones we saw earlier (e.g., existential and
universal quantifiers 3 and V): formalisms, which have no indication of, or reference
to, motion. The gestures (and the linguistic expressions used), however, tell us a very
different conceptual story. In both cases, these mathematicians are referring to fun-
damental dynamic aspects of the mathematical ideas they are talking about. In the
first example, the oscillating gesture matches, and it is produced synchronically with,
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the linguistic expressions used. In the second example, the iterative frontally-
unfolding circular gesture matches the inferential structure of the description of the
iteration involved in the increasing monotone sequence, where even the entire body
moves forwards as the sequence unfolds. Since the sequence is unbounded, it “takes
off to infinity,” idea which is precisely characterized in a synchronous way with the
full frontal extension of the arm and the hand.

_I-‘ _
|

Fig. 6. A professor of mathematics at a university level class talking about an unbounded
monotone sequence “going in one direction” (a through e), which “takes off to infinity” (f).

The moral we can get from these gesture examples is two fold.

First, gestures provide converging evidence for the psychological and em-
bodied reality of the linguistic expressions analyzed with classic techniques in
cognitive linguistics, such as metaphor and blending analysis. In these cases
gesture analyses show that the metaphorical expressions we saw earlier are
not cases of dead metaphors. The above gestures show, in real time, that the
dynamism involved in these ideas have full psychological and cognitive real-
ity.

Second, these gestures show that the fundamental dynamic contents involving
infinite sequences, limits, continuity, and so on, are in fact constitutive of the
inferential organization of these ideas. Formal language in mathematics,
however, is not as rich as everyday language and cannot capture the full
complexity of the inferential organization of mathematical ideas. It is the job
of embodied cognitive science to characterize the full richness of mathemati-
cal ideas.
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8 Conclusion

We can now go back to the original question asked in the title of this chapter: Do real
numbers really move? Since fictive motion is a real cognitive mechanism, constitu-
tive of the very notion of a real number, the answer is yes. Real numbers are meta-
phorical entities (with a very sophisticated inferential organization), and they do
move, metaphorically. But, of course, this was not the main point of this chapter. The
main point was to show that even the most abstract conceptual system we can think
of, mathematics(!), is ultimately embodied in the nature of our bodies, language, and
cognition. It follows from this that if mathematics is embodied in nature, then any
abstract conceptual system is embodied.

Conceptual metaphor and fictive motion, being a manifestation of extremely fast,
highly efficient, and effortless cognitive mechanisms that preserve inferences, play a
fundamental role in bringing many mathematical concepts into being. We analyzed
several cases involving dynamic language in mathematics, in domains in which, ac-
cording to formal definitions and axioms in mathematics, no motion was supposed to
exist at all. Via the study of gestures, we were able to see that the metaphors involved
in the linguistic metaphorical expressions were not simply cases of “dead” linguistic
expressions. Gesture studies provide real-time convergent evidence supporting the
psychological and cognitive reality of the embodiment of mathematical ideas, and
their inferential organization. Building on gestures studies we were able to tell that
the above mathematics professors, not only were using metaphorical linguistic ex-
pressions, but that they were in fact, in real time, thinking dynamically!

For many, mathematics is a timeless set of truths about the universe, transcending
our human existence. For others, mathematics is what is characterized by formal
definitions and axiomatic systems. From the perspective of our work in the cognitive
science of mathematics (itself), however, a very different view emerges: Mathematics
doesn’t exist outside of human cognition. Formal definitions and axioms in mathe-
matics are themselves created by human ideas (although they constitute a very small
and specific fraction of human cognition), and they only capture very limited aspects
of the richness of mathematical ideas. Moreover, definitions and axioms often neither
formalize nor generalize human everyday concepts. A clear example is provided by
the modern definitions of limits and continuity, which were coined after the work by
Cauchy, Weierstrass, Dedekind, and others in the 19" century. These definitions are at
odds with the inferential organization of natural continuity provided by cognitive
mechanisms such as fictive and metaphorical motion. Anyone who has taught calcu-
lus to new students can tell how counter-intuitive and hard to understand the epsilon-
delta definitions of limits and continuity are (and this is an extremely well-
documented fact in the mathematics education literature). The reason is (cognitively)
simple. Static epsilon-delta formalisms neither formalize nor generalize the rich hu-
man dynamic concepts underlying continuity and the “approaching” of locations.

By finding out that real numbers “really move,” we can see that even the most ab-
stract, precise, and useful concepts human beings have ever created are ultimately
embodied.
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Abstract. Embodied Al is a new approach to the design of autonomous intelli-
gent systems. This chapter is about a new principle for the design of such sys-
tems that is deeply rooted in the notion of embodiment. Embodied action has
causal effects on the nature and statistics of sensory inputs, which can in turn
drive neural and cognitive processes. The statistics of sensory inputs can be
captured by using methods from information theory, specifically measures of
entropy, mutual information and complexity, on sensory data streams. Several
such methods are outlined and their application to embodied Al systems is dis-
cussed.

1 Introduction

The creation of intelligent systems capable of autonomous behavior in complex envi-
ronments represents one of the major challenges to science and engineering in the 21%
century. In the past, the design of artificial intelligence (Al) revolved mainly around
the implementation of appropriate rules and representations in a (disembodied) com-
putational setting. The last decade or so has seen a radical paradigm shift towards
“embodied Al”, a new approach that explicitly incorporates aspects of body morphol-
ogy, movement and plasticity into its theoretical framework. While this approach is
still in its infancy, some general principles for the design of embodied Al systems are
on the horizon. This chapter is about one such principle, focusing on the impact of
embodiment on structuring sensory inputs. Structure, in this context, refers to statisti-
cal dependencies or relationships between receptors or sensing elements and can be
measured using quantitative approaches from information theory. We will argue that
structured sensory inputs can have a powerful influence on the information-
processing capacity of the embodied system’s control structure (e.g. its nervous sys-
tem).

First we need to discuss some of the central design features that are shared by
many kinds of natural and artificial embodied systems. We suggest that most embod-
ied systems consist of three integrated components:

() A control architecture. This can be a biological nervous system or a simulated
neural or cognitive model. Plasticity and adaptation (as the primary mechanisms of
development and learning) primarily take place within this “internal” set of structures.
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(b) A body. This can be either the body of an organism or that of an autonomous
robot. The body has a specific morphology (arrangement of sensory surfaces, ap-
pendages, muscles etc.) as well as a movement repertoire. While we view the body as
separate from the morphology of the control architecture itself, we note that the dis-
tinction between these two domains is rather less obvious in most biological organ-
isms. Brain and body morphology have obviously evolved together and form a con-
tinuum rather than strictly separate domains.

(c) An environment. The environment normally contains various objects and
events. In simulated models of embodied Al the environment is a part of the com-
puter simulation. If a physical robot is used, the environment often consists of a spe-
cific real-world ecological niche, constructed for experimental purposes in a labora-
tory. Other embodied systems or organisms may form part of this econiche.

While each of these three components can be independently modeled and studied,
embodied Al considers whole systems for which these three components are dynami-
cally and reciprocally coupled. This dynamic coupling is essential for the design
philosophy of embodied Al. Dynamic coupling, in this context, refers to continuous
reciprocal interactions between brain, body and world, across multiple time scales.
For example, it is obvious that neural signals (i.e. brain variables) can cause move-
ments of the body and thus action in the environment. It is perhaps less obvious, but
equally important to note that the effects of neural states on the environment can have
an impact on the nature and on the statistics of sensory inputs reaching the nervous
system. In other words, an embodied system determines what its future inputs will be
and thus imposes structure on its own sensory input space [1,2]. Sensory inputs, in
turn, have powerful roles to play in the development of neural structures and repre-
sentations. The statistical structure of sensory inputs is therefore a crucial ingredient
in learning and development.

We suggest that the generation of structure in input data is a fundamental principle
of embodied Al. Only an embodied system which is coupled to its environment
through sensorimotor interactions can actively structure its input space. In this chap-
ter, we first briefly discuss the importance of information for brain function. Then, we
outline ways to measure information in sensory inputs and explore the possibility of
quantifying the contribution of embodied interactions with the environment towards
the generation of statistical structure. At the end, we briefly discuss the potential rele-
vance of these results for robotics and embodied Al.

2 Information and the Brain

Why is information important for the brain? As neurons respond to sensory stimuli
they encode information about these stimuli in their firing patterns. Elevated firing
rates or increased synchrony within neuronal populations are two main coding dimen-
sions utilized by many neurons in different parts of the brain. Neural codes can be
“read” by other neuronal populations and in turn affect their activity states and firing
patterns. The concerted action of widely distributed neuronal populations in multiple
brain areas presumably underlies all cognitive, perceptual and behavioral states. The
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importance of neural coding and information for brain function is now almost univer-
sally recognized.

Numerous theories of information-processing in the nervous system have been
proposed over the past several decades. Some of these theories are attempting to
formulate computational principles that relate the statistics of sensory stimuli to neu-
ral processing and representation. It is increasingly realized that biological nervous
systems are embedded in often complex natural environments containing stimuli with
specific statistical properties and that real-world constraints have an impact on the
functional organization of the brain. We have argued previously [3] that there are (at
least) two fundamental challenges in information processing that are faced by higher
(mammalian) nervous systems.

(@) Information about stimuli in the environment needs to be efficiently ex-

tracted and mapped to functionally specialized neurons in the brain.

(b)  The information then needs to be functionally integrated to allow the emer-

gence of coherent brain states that can guide behavior.

Integration and segregation may be viewed, in some sense, as antagonistic princi-
ples. Functional segregation is consistent with the information-theoretical idea that
neurons extract specialized information from input patterns by eliminating redun-
dancy and maximizing information transfer. The idea that neurons perform highly
effective (perhaps near-optimal) information extraction has also been called the effi-
cient coding hypothesis [4], and its proponents have made significant efforts to char-
acterize the information present in naturalistic sensory stimuli. In contrast to func-
tional segregation, functional integration establishes statistical relationships (for ex-
ample in the form of temporal correlations) between distinct and often remote cell
populations and brain regions. This results in the generation of mutual information, a
general measure of statistical “overlap” or dependence. By creating these mutual
dependencies, local neuronal specialization may be degraded. Both, functional seg-
regation and integration can have causal efficacy within the brain, in that the inte-
grated action of specialized neurons can exert specific causal effects on other neurons
that are located elsewhere.

We have hypothesized [5,6] that the degree to which a neural system combines
functional specialization and functional integration is related to how well the system
is adapted to its specific environment. If it extracts information well and then inte-
grates it to generate coherent internal states, we may say that the system has a high
degree of “matching” to its stimulus world: its internal connectivity has captured
statistical regularities to a high degree. In previous computational work, we noted that
high matching within a neural system is facilitated if the input data (that constitute the
neural system’s environment) contains high amounts of structure. This observation is
central to our argument about a potential role of embodiment in shaping input statis-
tics. We will now discuss various quantitative measures of information that can be
used to analyze the role of embodiment in structuring sensory data.
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3 Measuresof Information

The entropy of a discrete random variable X occupying a finite set of states can be
calculated from the variable’s state distribution using Shannon’s formula [7].

H(X) = -Zip(i) log p(i) . )

If all possible states of the variable are equally likely, entropy is maximal. If only
very few states are occupied, entropy is reduced. Given two random variables X, and
X,, their mutual information (M) is

MI(X1;X2) = H(Xy) + H(X3) — H(Xy;Xy) . )

Ml is high if the state of one variable provides information about the state of the
other variable (i.e. if their joint entropy H(X;X,) is significantly less than the sum of
their individual entropies). For discrete random variables, the value for Ml can be
obtained from the joint state probability matrix. MI usually refers to instantaneous
statistical dependencies, without time-lag in the measurement of one variable over the
other. Time-lagged mutual information expresses how much information the state of
one variable provides about the state of the other variable, when both measurements
are separated by a fixed time interval.

In a series of studies [3,5,6,8,9] aimed at characterizing information states in neu-
ral systems we introduced several multivariate statistical measures that were designed
to capture global aspects of how much information (statistical dependence) is present
within a given system of arbitrary size, and of how this information is distributed. A
global estimate of the amount of statistical dependence within a given system or set of
elements X = {X,, X,, ... X} is provided by the difference between the individual
entropies of the elements and the joint entropy of the entire set, called integration:

1(X) = ZiH(x) - H(X) . )

Any amount of statistical dependence between the elements will express itself in a
reduction of their joint entropy and thus in a positive value for 1(X). If all elements
are statistically independent their joint entropy is the sum of the element’s individual
entropies and 1(X) = 0. Thus, integration quantifies the total amount of structure or
statistical dependencies present within the system. Comparing Eq. 2 and 3 reveals that
integration is the multivariate generalization of mutual information.

The interplay between segregation and integration within a given system is cap-
tured by the global structure of the system’s covariance matrix (which captures all of
its linear pair-wise interactions). Segregation and integration leave characteristic
signatures in the pattern of statistical interactions and dependencies. As reviewed
above, statistical dependencies between the elements of a system can be measured by
estimating their entropy and mutual information. Systems that combine functional
segregation and functional integration exhibit “interesting” structure that is present at
different levels of scale, a hallmark of complexity [3]. Less complex systems contain
no statistical structure (random systems) or contain structure only at one level (e.g.
crystals) which simply repeats. To calculate the complexity for a given system, we
derive the spectrum of average integration across all levels of scale. In general, if the
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system contains local structure (at a small spatial scale) as well as global structure (at
a large scale) this measure will be high. Here, we use an equivalent measure of com-
plexity that does not require the full spectrum of entropy and integration (H(x|H-Xx)
denotes the conditional entropy of one element, given the rest of the system):

C(X) = H(X) — ZiH(xi[X-x;) . (4)

We have shown previously [6] that complexity is high for systems that effectively
combine functional segregation and integration, e.g. by incorporating specialized
elements that are capable of global (system-wide) interactions. On the other hand,
complexity is low for random systems, or for systems that are highly uniform (or, in
other words, systems that lack either global integration or local specialization).

In neuronal networks, there is a strong relationship between complexity (as deter-
mined from the pattern of statistical interactions among elements of a system) and the
pattern of anatomical or structural connections [6]. Complexity (and other informa-
tional measures, such as entropy or integration) can be used as cost functions in
simulations designed to optimize network architectures. We found that networks
optimized for high complexity showed structural motifs that are very similar to those
observed in real cortical connection matrices [6,9], in particular a tendency to form
clusters, short characteristic path lengths and short wiring lengths. Other informa-
tional measures produced networks with strikingly different structural characteristics.

Given that the simultaneous generation and integration of information within the
brain is such a challenging task, what impact does it have for the brain to be embod-
ied? Does embodiment add to the difficulty of the information-processing challenges
faced by real brains or does it help in solving them? In order to approach this ques-
tion, we turn to a very simple demonstration of how measures of information might
be used to quantify structure in sensory data, and of how movement strategies that
involve a high degree of coupling between an agent and an environment can result in
generating useful structure in sensory inputs.

4 Structuring Sensory Data: Two Examples

These measures of information, integration and complexity can be applied to time
series of random variables irrespective of their origin, whether they are neural or non-
neural. Specifically, we can apply these measures to time series of sensory inputs to
gain insight into their informational content. The first application of this kind was
carried out by Lungarella and Pfeifer [10] and the examples we introduce in this
chapter are based on their initial study.

4.1 Simulation of Visual Tracking

Figure 1 (left) shows the basic layout of a computer simulation of the sampling of
visual data. The environment consists of an array of 100100 pixels with randomly
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Fig 1. (Left) Simulation environment (100x100 pixels) with the agent’s window (20%20 pix-
els) centered on the object (red square, 8x8 pixels). (Right) Pan/tilt camera platform.

assigned color values (RGB, 8-bit resolution). Color values of all pixels are updated
once every time step, resulting in independent discrete (8-bit) time series for each of
the pixels. The environment also contains a single object, a red square with a size of
8x8 pixels. This object is moving through the environment in a random path. The
environment houses a single agent, viewing a portion of the environment through a
window (20x20 pixels), which represents its visual field. The agent can move about
the environment, by displacing the window, which results in a time series of visual
images (input). We implemented two distinct movement strategies for the window:

e The first strategy (“random”) involved random movements where new lo-
cations were chosen independent of the visual image itself.

e The second strategy (“tracking”) involved the selection of movements de-
pending on sensory visual inputs. The agent’s neural architecture con-
sisted of topographic maps of receptors that were sensitive to red, green
and blue pixel values. A scaled linear combination of these receptor maps
was generated. The scaling factors were set such that the color red was
preferentially detected. Then, the output of this operation was passed
through a spatial filter chosen to enhance regions of coherent color val-
ues, similar to an attentional “saliency map”. In this map, the spatial loca-
tion with the maximal activation value was labeled and a saccadic move-
ment of the window to that location was generated.

What distinguishes these two movement strategies is that the random strategy does
not involve coupling of the agent’s actions to the environment, while the tracking
strategy does involve such coupling. For both movement strategies, the sensory data
within the moving window are recorded for later analysis. A typical simulation run
lasts for 100,000 time steps. Movies of the “random” and “tracking” conditions can
be downloaded at www.indiana.edu/~cortex/lab.htm. At the end of a typical run, the
recorded sensory data consists of a single matrix of 400 random variables sampled at
8-bit resolution for 100,000 time steps, for each of the color channels red, green, and
blue. Only the red channel is used in the present analysis.
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Fig. 2. Movement strategy “random”. Plots of entropy (upper left panel), instantaneous mu-
tual information (lower left panel), time-lagged mutual information (lower right panel) and
correlation matrix (upper right panel). Entropy is shown in a topographic map over the 20x20
pixels of the window. A strip of 18 pixels along the central vertical axis is marked (rectangular
box). Data from these pixels is used for the analyses shown in the other panels.

Fig. 2 and 3 show representative data sets obtained from two individual simula-
tions, with movement strategies “random” and “tracking”, respectively. Each figure
shows data for entropy and mutual information as well as the correlation matrix for
visual inputs.

For the “random” movement strategy, the entropy of the visual inputs at all loca-
tions within the moving window is homogeneous and near-maximal (8 bits, for a state
space with 2° states). The instantaneous mutual information is uniformly low (less
than one bit). Similarly, the time-lagged mutual information (time delay = 5 time
steps) is uniform and approximates zero. The residual mutual information seen in
both plots is due to the incomplete coverage of the joint state space (2'° bins). Dis-
cretizing the data using lower resolution (e.g. 5-bit) eliminates this residual MI com-
pletely (data not shown). Not surprisingly, given the absence of any statistical rela-
tionships between any of the visual inputs, the correlation matrix is flat with correla-
tions very close to zero throughout.

For the “tracking” strategy, the entropy of the visual inputs at or near the foveal
part of the visual field is markedly reduced to around 3 bits. In addition to lowered
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Fig. 3. Movement strategy “tracking”. Plots of entropy (upper left panel), instantaneous mu-
tual information (lower left panel), time-lagged mutual information (lower right panel) and
correlation matrix (upper right panel).

entropy, foveal visual inputs have high mutual information, in excess of 1 bit. Time-
lagged mutual information is also relatively high for visual inputs at or near the foveal
region, indicating that these input states remain correlated over several input frames.
While extra-foveal visual inputs do not show any consistent cross-correlation, the
foveal inputs exhibit significant cross-correlations of around 0.6-0.8.

The correlation matrices for “random” and “tracking” simulations can be used to
calculate the overall complexity of the visual data. In order to calculate the joint en-
tropies and mutual information directly from the correlation matrix we transformed
each of the time series of visual inputs into an equivalent time series with a Gaussian
amplitude profile, which maintains (approximately) the same linear and non-linear
interactions. Then, integration and complexity are calculated using equations 3 and 4,
following standard formulae for Gaussian multivariate processes [7]. We obtain val-
ues of I(X) = 0.0130 and C(X) = 0.0011 for the “random” condition and I(X) =
2.4402 and C(X) = 0.0961 for the “tracking” condition.

4.2 A Simple Robot Experiment

In addition to the computer simulation discussed above, we also constructed a robotic
platform designed to sample visual inputs. The robotic platform (Fig. 1, right) con-
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sisted of a color CCD camera mounted on a 2 DOF pan-tilt unit. Camera images were
captured using a standard frame grabber, acquired under constant illumination and
spatially averaged to yield a resolution of 16x12 pixels, with one image each for the
red, green and blue channels of the color camera. Motor commands moved the
pan/tilt servos to specified positions resulting in image displacement. The stimuli used
in these experiments were “color Mondrians”, i.e. large collages composed of small
color patches of a broad range of colors.,

We compared two different motor strategies (cf. above section): 1) “random”: the
camera was moved at random; 2) “tracking”: the camera was controlled as described
above for the computer simulation. Throughout the experiment, the stimulus was
manually switched every 25 seconds (50 images) in order to generate changing visual
scenes that would trigger new tracking movements.

Image time series acquired for two representative experiments using these two
motor strategies were normalized, discretized to 5-bit resolution and examined for
patterns of entropy, mutual information, integration and complexity. All calculations
were carried out as described above. Entropy of visual inputs was significantly re-
duced in the “tracking” over the “random” condition (3.39 + 0.31 bits versus 3.72 *
0.29 hits, t(382) = 10.37, p<0.001). Instantaneous mutual information for neighboring
visual inputs located along a central strip of 10 pixels (as in Fig. 1, left) was signifi-
cantly increased for “tracking” over “random” conditions (1.46 + 0.24 bits versus
1.18 + 0.19 bits, t(16) = 2.76, p<0.01), a trend that persisted also for time-lagged
mutual information (lag = 5 time steps, data not shown). Integration and complexity
for these inputs were 1(X) = 0.9858 and C(X) = 0.0985 for “random” and I(X) =
2.2296 and C(X) = 0.1931 for “tracking”. Corresponding correlation matrices show-
ing elevated cross-correlations between neighboring visual inputs for the “tracking”
condition are shown in Fig. 4.

4.3 Summary of Results

These examples serve the purpose of illustrating the potential use of quantitative
measures of information in the context of robotics. The interpretation of the compu-
tational results is relatively straightforward. The “tracking” movement strategy in-
volves the coupling of the agent’s sensory surface to patterns and changes in the envi-
ronment. No such coupling occurs in the “random” strategy. As a result of the pro-
pensity of the agent/camera to track moving red objects, visual inputs near the fovea
tend to sample pixels with high values for the color red, thus altering their overall
state space distributions and reducing the input entropy. The spatial extent of red
objects (covering approximately one-third of the total visual angle) generates correla-
tions in the states of neighboring visual inputs at or near the foveal region of the vis-
ual field. Thus, these inputs exhibit not only reduced entropy, but also increased mu-
tual information and cross-correlation. The temporally continuous nature of tracking
movements results in elevated mutual information “across time”, i.e. mutual informa-
tion between neighboring visual inputs that persists over an extended series of input
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Fig. 4. Comparison of correlation matrices obtained from data collected with the pan/tilt cam-
era platform using movement strategies “random” (left) and “tracking” (right).

frames. The overall pattern of inputs in the “tracking” condition contains more statis-
tical dependencies and is significantly more complex than for the “random” strategy,
with a subset of inputs exhibiting high correlations (“local structure”).

5 Application to Embodied Artificial I ntelligence

The above examples were deliberately simplified and idealized to illustrate how in-
formational patterns in inputs may depend on the coupling between an agent and its
environment. Our results are in agreement with those of other studies that have shown
that simple sensorimotor functions like gaze direction and foveation can generate
high mutual information and complexity in visual inputs [10,11]. Other examples of
(in Rolf Pfeifer’s words) “generating good structure” in sensory inputs exist, but have
so far not been subjected to a rigorous information-theoretical analysis. Fitzpatrick
and Metta, for example, have described a robot that can push and physically displace
objects in a visual scene [12]. The action of the robot causes the sudden appearance
of spatially and temporally correlated movement in the visual array, which can be
used to segment the object from a background. This is an important demonstration of
how the embodiment of a robot can simplify an otherwise very difficult visual task,
that of segmenting the image into discrete objects. Another sensorimotor function
with very dramatic effects on the statistics of visual inputs is attention-driven sac-
cades (camera/eye movements) which determine the direction of gaze [13]. Depend-
ing on the state of the attentional system different kinds of objects are preferentially
selected and placed in the central region of the visual array where they may be sub-
jected to closer visual analysis. The use of systems directing the gaze of a robot
clearly shows that action and perception of neuro-robotic systems form closely cou-
pled dynamical loops and are often inseparably linked.

Other examples of how embodiment helps in structuring input spaces have hinted
at the potential importance of this effect in development and learning. There are sev-
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eral examples of how the development of specific neural and cognitive functions may
depend on the embodied actions of a robot. Scheier and Lambrinos [14] and Pfeifer
and Scheier [2] have developed several models of perceptual categorization that util-
ized robot behavior to generate inputs allowing the discrimination of objects belong-
ing to different categories. Almassy et al. [15] modeled the development of complex
receptive field properties in visual cortex in a robot behaving in a real-world envi-
ronment. They found that self-generated movements of the robot resulted in smooth
lateral displacements of objects within the robot’s visual field, thus generating tempo-
ral correlations over multiple image frames that could be exploited by neurons in
inferior temporal cortex. In addition, the map of modeled neurons in inferior temporal
cortex showed experience-dependent fluctuations which reflected the history and
frequency of stimulus encounters. Krichmar et al. [16] extended this aspect of the
model and recorded systematic changes in receptive field properties of object-
selective visual neurons with object composition of the environment, demonstrating
the experience-dependence of perceptual categorization.

In a model of reward conditioning in an autonomous robot, Alexander and Sporns
[17,18] found evidence for complex interactions between behavior and neural states
that can significantly influence developmental trajectories and learning patterns.
They found a surprising degree of coupling between neural and behavioral variables
even when examining relatively simple environments and neural structures. The ro-
bot’s actions altered the spatial distribution of rewarding objects, which in turn im-
pacted on the timing of rewarding stimulus encounters. The difference in the timing
of the rewarding events led to differences in the development of synaptic patterns
representing predictions about future rewards.

As these studies of embodied systems show, robots and organisms do not passively
absorb information from their surrounding environment, but their actions on the envi-
ronment select and shape this information. Informational patterns in sensory inputs
can be exploited by neural circuits and promote the stabilization of matching neural
connections that incorporate recurrent statistical features. There is abundant evidence
that the statistics of sensory inputs are of great importance in learning and develop-
ment. The sensitivity of brain tissue to patterns in sensory inputs gives special signifi-
cance to the causal influence of embodiment on input statistics. The examples pre-
sented in this chapter only provide a very preliminary glimpse of the fundamental role
of embodiment in shaping the statistics of sensory inputs. Much more work remains
to be done in this emerging area of artificial intelligence, by investigating the causal
role of motor actions and behavior in selecting inputs and generating statistical regu-
larities that can be exploited by neural mechanisms. These studies may lead to a new
set of principles and quantitative measures that may help guide robot design to create
devices whose motor capabilities match their internal processing power.
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Robot Bouncing: On the Synergy Between Neural and
Body-Environment Dynamics
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Abstract. The study of how infants strapped in a Jolly Jumper learn to bounce
can help clarify how they explore different ways of exploiting the dynamics of
their movements. In this paper, we describe and discuss a set of preliminary ex-
periments performed with a bouncing humanoid robot and aimed at instantiating a
few computational principles thought to underlie the development of motor skills.
Our experiments show that a suitable choice of the coupling constants between
hip, knee, and ankle joints, as well as of the strength of the sensory feedback,
induces a reduction of movement variability, and leads to an increase in bouncing
amplitude and movement stability. This result is attributed to the synergy between
neural and body-environment dynamics.

1 Introduction

Despite the availability of many descriptive accounts of infant development, modeling
how motor abilities unfold over time has proven to be a hard problem [I[2/3]. Existing
models are based on general principles and specific mechanisms which are assumed to
underlie the changes in early motor development.

One such mechanism is self-exploration through spontaneous activity. An important
precursor of later motor control [4/5]6], its main role seems to be the exploration of
various musculo-skeletal organizations in the context of multiple constraints such as
environment, task, architecture of nervous system, muscle strength, mass of the limbs,
and so on. A growing number of developmental psychologists has started to advocate
the view that self-exploration through spontaneous movements helps infants bootstrap
new forms of motor activity, as well as discover more effective ways of exploiting
the dynamics generated by their bodily activities [7/1/8l2/9]. It has been suggested
that through movements that garner information specific to stable regions in the high-
dimensional space of possible motor activations, self-exploration can lead to a state of
awareness about body and environment [1]. In fact, fetuses (as early as 8 to 10 weeks
after conception) as well as newborn infants display a large variety of transient and
spontaneous movement patterns such as infant stepping and kicking [3], spontaneous
arm movements [10], and general movements and sucking movements [1I]. Infants
probably learn about their body by performing movements over and over again, and by
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exploiting the continuous flow of sensory information from multiple sensory modalities.
In doing so, they explore, discover, and eventually select —among the myriad of available
solutions — those that are more adaptive and effective [[7].

The control of exploratory movements has been traditionally attributed to neural
mechanisms alone. Prechtl, for instance, linked the production and regulation of spon-
taneous matility in infancy “exclusively” to endogenous neural mechanisms, such as
central pattern generators [1I]]. This claim is somewhat substantiated by the fact that
in many vertebrate species, central pattern generators appear to generate the rhythm
and form of the bursts of motoneurons [1Z], or to govern innate movement behaviors
altogether [4].

In the last two decades, however, new evidence has pushed forward an alternative
and multi-causal explanation theoretically grounded into dynamic systems theory [3].
According to this view, coordinated motor behavior is also the result of a tight coupling
between the neural and biomechanical aspects of movement, and the environmental
context in which the movement occurs [II3]1413]. Spontaneous movements are not
mere random movements, but are organized (or better, self-organize), right from the very
start, into recognizable patterns involving various parts of the body, such as head, trunk,
arms, and legs. Spontaneous kicks in the first few months of life, for instance, appear
to be particularly well-coordinated movements characterized by a tight coupling [6}
3], and by short phase lags between the hip, knee and ankle joints [5]. Rigid phase-
locked movements can be interpreted as a “freezing” of a number of degrees of freedom
that must be controlled by the nervous system, thus resulting in a reduction of the
movement variability and complexity, and in a faster learning process [15/16]. During
development, the strong synchrony is weakened, and the degrees of freedom are gradually
“released” [BI6/17]. The ability to change the patterns of coordination between various
joints to accomplish a task is an important aspect of infants” motor development [[7].
It has been shown that tight interjoint coupling persisting beyond the first few months
of life may lead to poor motor development, or may even be associated with abnormal
development [17].

In a previous paper, we examined the effects of “freezing and freeing of degrees of
freedom” [18] in a swinging biped robot. The study showed that by freezing (that is,
rigidly coupling) and by subsequently freeing the mechanical degrees of freedom, the
sensorimotor space was more efficiently explored, and the likelihood of a mutual reg-
ulation of body-environment and neural dynamics (that is, entrainment) was increased.
The aim of this chapter is to further our understanding of the role played by the coupling
(a) between joints, and (b) between the sensory apparatus and the neural structure for
the acquisition of motor skills. To achieve this goal, we embedded a pattern generating
neural structure in a biped robot, and by manually altering various coupling constants,
we systematically studied their interaction with the body-environment dynamics in the
context of a real task (bouncing).

2 Hypotheseson Infant Bouncing Learning

Goldfield et al. [19] performed a longitudinal study in which eight six-months old infants
strapped in a “Jolly Jumper” (i.e., a harness attached to a spring) were observed once a
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week, for a period of several weeks, while learning to bounce. They concluded that in
the course of learning, the infants’ motor activity could be decomposed into an initial
“assembly phase”, during which kicking was irregular and variable in period, followed
by a “tuning phase” characterized by bursts of more periodic kicking and long bouts of
sustained bouncing, during which infants seemed to refine and adapt the movement to
the particular conditions of the task. A third phase was initiated by a sudden doubling of
the bout length, and was characterized by oscillations of the mass-spring system at its
resonant frequency, a sensible rise of amplitude, and a decrease of the variability of the
period of the oscillations.

A few principles can be derived from this study. First, there is no need to postu-
late a set of preprogrammed instructions or predefined motor behaviors. It is by means
of a process of self-organization and self-discovery, and through various spontaneous
(seemingly random) movements that infants explored their action space and eventually
discovered that kicks against the floor had “interesting” consequences [19]. After an ini-
tial exploratory phase (assembly), the infants selected particular behaviors and began to
exploit the physical characteristics of the mass-spring system. Goldfield and collabora-
tors advanced the hypothesis that, in general, infants learning a task may try out different
musculo-skeletal organizations by exploring the corresponding parameter space, driven
by the dynamics of the task as well as by the existing repertoire of skills and reflexes.

Second, to achieve effective and continuous bouncing, i.e., bouncing characterized
by simultaneous leg extensions, the infants had to learn patterns of intersegmental coor-
dination. Thus, the infants had to explore different force and timing combinations for the
control of their movements, and to integrate the environmental information impinging
on various sensory modalities, i.e., visual, vestibular, and cutaneous. Unfortunately, the
study performed by Goldfield et al. did not provide any kinematic or kinetic analysis of
the development of the infants’ movement patterns. In line with the findings reported
in [I8J6/17], we hypothesize that in order to reduce movement complexity, the initial
movements had to be performed under tight intersegmental coupling. As development
and learning progressed, the couplings were weakened, and more complex movement
patterns could be explored. Thelen and colleagues put forward evidence showing that in
infants the loosening of the tight joint coupling may not necessarily be a consequence of
maturation of the nervous system alone [3], but instead may be also ascribed to changes
in muscle mass, body composition, and body proportion.

Third, the rhythmic nature of the task (bouncing) can be interpreted as a particular
instance of Piagetian circular reactiorfl. Rhythmic (not necessarily task-oriented) activ-
ity is highly characteristic of emerging skills during the first year of life. Thelen and
Smith suggested that oscillatory movements are the by-product of a motor system under
emergent control, that is, when infants are in the process of attaining some degree of
intentional control of their limbs or body postures, but when their movements are not
fully goal-corrected [3].

Finally, this study highlighted the necessity of a value system to evaluate the con-
sequences of the movements performed, and to drive the exploratory process. Value

! Circular reactions represent an essential sensorimotor stage of Piaget’s developmental sched-
ule [20], which refer to the repetition of an activity in which the body starts in one configuration,
goes through a series of intermediate stages, and eventually returns to the initial configuration.
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systems are known to mediate plasticity and to modulate learning in an unsupervised
and self-organized manner, allowing organisms to be adaptive, and to learn on their
own via self-generated and spontanenous activity. They also create the necessary condi-
tions for the self-organization of dynamic sensory-motor categories, that is, movement
patterns.

3 Experimental Setup

To test our computational hypotheses, we decided to replicate Goldfield et al.’s exper-
iments using a small-sized humanoid robot with 12 mechanical degrees of freedom
(Fig.[@). The robot was suspended in a leather harness attached to two springs. Each leg
of the robot had three segments (thigh, shank, and foot) and five joints, but only three of
the latter (i.e., hip, knee and ankle) were used. Each joint was actuated by a high-torque
RC-servo module. These modules are high-gain positional open-loop control devices
and do not provide any feedback on the position of the corresponding joint. In fact, there
was no need to measure the anatomical angles of hip, knee and ankle, since these values
were available as the set positions of the RC-servo modules. Exteroceptive and proprio-
ceptive information were also taken into account. Ground reaction forces were measured
by means of force sensitive resistors placed under the feet of the robot (two per foot).
To reduce impact forces in the joints of the robot and to add some passive compliance,
the soles of the robot’s feet were covered with soft rubber. Torsional movements around
the z-axis were measured with a single-axis solid-state gyroscope. Linear accelerations
in the sagittal plane were estimated by a dual-axis accelerometer (Fig. @right).

k2, b2 kl’ b1 Spring

I} .
HI aZ‘D 1 2-axis accelerometer

- 1-axis solidstate gyro

E=1l <— force sensitive resistors
X

Y

Fig. 1. Left: Humanoid robot used in our experiments. Right: Schematic representation of the
robotic setup.
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Neural system value system

modulation .
parameter exploration
neural rhythm

O~ generator
motor output sensory input

generate action sense consequence
of action

motor commands
motor commands

‘ Musculo-skeletal system

Fig. 2. Left: Basic structure of the neuro-musculo-skeletal system. The arrows in the model show
the information flow. Right: Neural rhythm generator composed of six neural oscillators. The solid
circles represent inhibitory, and the half-circles are excitatory connections. Abbreviations: he=hip
extensor, hf=hip flexor, ke=knee extensor, kf=knee flexor, ae=ankle extensor, af=ankle flexor. Not
shown are proprioceptive feedback connections and tonic excitations.

3.1 Neural Rhythm Generator

Figurel2 (right) depicts a schematic representation of the neuro-musculo-skeletal system
inspired by [14]. The neural rhythm generator or central pattern generator [12] was con-
structed by using six neural oscillators, each of which was responsible for a single joint
(Fig. @ right). We modeled the individual neural oscillators according to the following
set of nonlinear differential equations [21]):

Tully = —uf — By — we g(te) — wp g(Feea) + te
Tulle = —Ue — Bve — we g(uy) — wp g(—Feca) + te
T, U = —vy + g(uy)

Ty Ve = —Ve + g(ue)

Yout = Uf — Ue

where u, and u are the inner states of neurons e (extensor) and f (flexor), v, and vy
are variables representing the degree of adaptation or self-inhibition of the extensor and
flexor neurons. The external tonic excitation signal ¢te determines the amplitude of the
oscillation. 3 is an adaptation constant, w.. is a coupling constant controlling the mutual
inhibition of neurons e and f, 7, and 7, are time constants, and determine the strength of
the adaptation effect. The operator g(x) = max(0, x) returns the positive part of .. The
difference of the output of the extensor and the flexor neuron of each unit oscillator was
fed to a pulse generator. Its output y,,,; was the angle of the RC-servo associated with the
corresponding unit oscillator. Sensory feedback to the pattern generator F.., occurred
through four the pressure sensors located under the robot’s feet. The value of the afferent
feedback was computed as the sum of the sensed ground reaction forces, weighted by the
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variable w,,. Appropriate joint synergies among ipsilateral joints, i.e., appropriate phase
relationships between the corresponding neural oscillators, were produced by feeding
the flexor unit of one oscillator with a combination of the output of the extensor and
flexor units of the other oscillator. As shown by Fig.[2] reciprocal inhibitory connections
between corresponding flexor and extensor neurons of the left and right hip joint were
also implemented.

3.2 Selection of the Neural Control Parameters

The adaptation constant 5 and the degree of mutual inhibition between extensor and
flexor neuron of a single neural oscillator were fixed throughout the whole study to
£ = 2.5and w, = 1.0. The tonic excitation was fixed to te = 1.0, and the intersegmental
coupling constant to ws = 0.75. The high value of the latter constant induced kicking
patterns with a tight joint coupling. According to Williamson [22], the time constants 7,
and ,, determine the shape and the speed of the oscillator output. In order to guarantee
stable oscillations, the ratio r = 7, /7, should be kept in the interval [0.1, 0.5]. In all
experiments, we fixed the ratio r to 0.5. The sensory feedback coefficient w,, was variable,
and was set as specified in each sub-section.

4 Experimentsand Discussion

To model and analyze our experimental results, we assumed an ideal mass-spring-
damper system. This model represents a first attempt to identify a relationship be-
tween oscillation frequency, amplitude of the oscillation, and other parameters. The
differential equation governing the free oscillation of the mass-spring-damper system is
mE(t) +ba(t) + kx(t) = 0. In our case, m is the mass of the robot, b is the damping
coefficient of the spring and % its spring constant. The equation has solutions of the form:
x(t) = AePt/27 cos(wyt + ¢), where A (amplitude of the oscillation) and ¢ (phase)
are determined by the initial displacement and velocity of the robot. w,, = /k/m
is defined as the undamped natural frequency of the mass-spring-damper system and
wg = /w2 — (b/2m)? < w, is its damped natural frequency. The mass of the robot
(fixed throughout all experiments) was m = 1.33kg. The estimated spring constant was
k1 = ko = 25.5N/m, and the damping coefficient was b = 0.065kg/sec for both
springs (Fig. [ left). For the computation of b, we assumed a viscous frictional force,
proportional to the velocity of the oscillation.

In all experiments, we recorded the system’s movements by tracking the position
(relative to an earth-fixed frame of reference) of colored markers placed on the robot’s
hip, knee and ankle. The experiments were organized according to the complexity of
their environmental interaction (with/without ground contact, with/without sensory feed-
back).

4.1 Scenariol-—FreeOscillations

This scenario served to assess the basic properties of the real system and of the corre-
sponding mass-spring-damper model needed to qualify oscillatory behaviors (and mate-
rialize the presence of entrainment). The robot’s joints were not actuated, and the robot
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was set so that its feet could not touch the ground no matter the amplitude of the ver-
tical oscillations. At the onset of the experiment, the robot was lifted by an arbitrarily
chosen height, and then let oscillate freely. The resulting motion was harmonic and un-
derdamped, with an exponentially decreasing amplitude of the form e=%¢ sin(2xt/T),
a decay coefficient « = 0.124/sec, and a period T" = 1.01sec. Hence, the resonance
frequency of the system could be estimated to be fr = 1/T = 0.99H z =~ wy/27. The
effective spring constant of the system was K.,y = 50.5 N/m, which is almost twice
the spring constant of each spring. From our measurements, we estimated the effective
damping coefficient to be approximately By = 0.33N sec/m. Note that B, s is not
twice the damping coefficient of a single linear spring, as might be inferred by the value
of K.zy. This clearly shows that the system is not a close-to-ideal mass-spring system,
and that a more rigorous approach would have to consider a better model for the damping
force. For instance, viscous frictional forces proportional to the square of the velocity
of the mass should be taken into account.

4.2 Scenario 2 —Forced Oscillations Without Ground Contact

In this experiment, the robot’s joints were actuated such that the equation describing the
motion of the robot was m & (¢) + b (t) + k x(t) = F(t), where driving force F'(t) is
a function of the paramter settings of the neural oscillators and of the amplitude of the
robot’s limb movements (as suggested by Goldfield [19]). In other words, the movement
of the robot can be modeled as a forced mass-spring system, with the robot’s kicking
movements representing the driving force. As in scenario 1, the robot could not reach
the ground with its feet. After an initial transient, the system converged to a steady
state, a forced harmonic oscillation. Vertical resonance was achieved for the parameter
setting (7, = 0.108, 7, = 0.216), and resulted in an average vertical displacement from
the rest position of 10.6¢m, and a peak displacements exceeding 17¢m. The dominant
frequency of the oscillation, estimated via a spectral analysis of the vertical component
of the hip marker position, was fx;, = 1.01.H z, which was very close to the previously
estimated resonant frequency of the system fr = 0.99Hz. Interestingly, the system
displayed at least three oscillatory modes. This behavior is akin to spontaneous activity
in infants, who enter preferred stable states and exhibit abrupt phase transitions between
states [I]]. Parameter settings close to (7, 7,) = (0.066,0.132) led to a strong horizontal
oscillatory motion, whereas for 7, > 0.150 and 7, > 0.300, there was an evident
torsional movement. For 7, < 0.06, vertical oscillations were essentially unexistent.

4.3 Scenario 3 —Forced Oscillationswith Ground Contact (w, = 0)

The goal of this set of experiments was to assess the effect of ground contact on the
oscillatory movement observed in scenario 2, in the absence of afferent feedback from
the touch sensors (i.e., w, = 0). At the onset of each experimental run, we made sure
that the robot’s feet could touch the ground. To correct for the lack of compliance in
the robot’s joints, the ground was covered with soft material. The introduction of this
additional nonlinear perturbation led (given appropriate neural control parameters) to
the emergence of a new behavior: bouncing. Figure[3 shows the result of three different
parameter configurations. A suitable model of the movement of the robot’s center of
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mass needs also to take into account the nonlinear interaction with the ground, and the
stiffness and damping characteristics of the floor and the feet. We propose the following
linear model (see also [19]): m &(t) + Besy &(t) + Keyp x(t) = F(t), where F(t) =0
when the feet are off the ground and F'(t) = Fy — Fysin(2n ft), Fo > 0, when the feet
are on the ground, with K., (effective spring constant) and B,y (effective damping
coefficient) incorporating the effect of springs, feet and floor.
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Fig. 3. Forced harmonic oscillations with ground contact (bouncing) in the absence of sensory
feedback (w, = 0). Top: 7, = 0.108,7, = 0.216 and 7, = 0.140,7, = 0.280, bottom:
7o = 0.114, 7, = 0.228 (phase plot on the right). In all graphs, the three curves represent the
vertical displacement of the ankle, knee and hip marker in cm.

4.4 Scenario 4 — Forced Oscillationswith Ground Contact (w, > 0)

Afferent sensory feedback and contact with the ground induced a “haptic closure” of the
sensory-motor loop, which turned the linear and externally driven mass-spring system
of experiments 2 and 3 into an autonomous limit-cycle system with the intrinsic timing
determined by the moment of foot contact with the ground and by the gain of the
feedback connection w,,. In other words, the kicking frequency (implicitly timed by the
neural oscillators) and its phase relationship with the bouncing was regulated by haptic
information, and resulted in entrainment between time of ground contact and period of the
neural oscillators. A positive w,, had at least two advantages: (a) it led to a stabilized and
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sustained bouncing, and (b) to an increase of its amplitude (measured as the difference
between successive maxima and minima of the vertical displacement). These effects are
visualized in Figure[ top-left, in which the parameters were (7., 7,) = (0.114,0.228)
and w, = 0.5. The phase plot of the same time series is depicted in Figure [ (top-
right). The phase plots in figures [Bland [ clearly demonstrate the stabilizing effects of
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Fig. 4. Forced harmonic oscillations with ground contact (bouncing) in presence of sensory feed-
back (w, > 0). Top row: w, = 0.5,7, = 0.114, 7, = 0.228, bottom row: w, = 0.75,7, =
0.140, 7, = 0.280.

sensory feedback. In Fig. @l (top-right), the parameters were (7, = 0.140, 7, = 0.280)
and w, = 0.75, and the bouncing was stable and sustained. For w, = 0, however, the
bouncing suddenly collapsed and exhibited more variability (Fig. Bltop-right).

Theinfluence of sensory feedback on the bouncing amplitude is evident by comparing
Fig.[3(bottom) with Fig.[4 (top). In the latter case, the maximum vertical displacement of
the hip relative to the initial position of the ankle marker was 27.3¢m, and its maximum
vertical displacement relative to the initial position of the hip marker was 4.4cm. The
dominant frequency of the vertical oscillation (determined via a spectral analysis of the
hip marker) was fr;, = 0.93Hz, whereas fr;, = 0.95Hz for the same parameter
configuration but with w, = 0. Thus, the sensor feedback also affected the frequency
of the oscillation. After a short initial transient, the robot settled into a stable oscillatory
movement but did not bounce.
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In this scenario, the model is more complicated and has to take into account the
change of phase and timing due to the sensory feedback. This is realized by introducing
anew variable ¢ such that m &(¢) + Besy &(t) + Kepp z(t) = F(t, ¢).

5 Discussion and Conclusion

The question of how sensory feedback interacts with the central pattern generator is still
open [14]. As a demonstration that sensory feedback is not necessary for the generation
and coordination of rhythmic activity, experiments in completely isolated spinal cords
and in deafferented animals (i.e., without sensory feedback) have shown that the pat-
terns generated by these type of structures are very similar to those recorded in intact
animals [23]]. What emerged from our study is that a suitable choice of the intersegmen-
tal coupling constant, as well as of the gain of the sensory feedback reduces movement
variability, increases bouncing amplitude, and leads to stability. We attribute this result to
the entrainment of neural and body-environment interaction dynamics. In other words,
the neural system of our model is designed to produce a basic pattern of muscle acti-
vation established not only by the connections between the neural oscillators, but also
by the input of sensory signals representing body movements and the coupling with the
environment. Through a recurrent interaction in the sensorimotor loop, the variability
and instability of the movements are stabilized into a limit cycle. In the sense that such
a coupling produces an effect greater than the sum of the individual components, it is
a synergistic coupling. A similar finding, in the case of biped walking, was reported by
Taga [14].

Goldfield et al. [19] suggested that the developmental transformation of spontaneous
motor activity into task-specific movements consists of two phases, which they called
assembly and tuning phase. While assembly refers to the self-organization of relation-
ships between the components of the system, tuning is concerned with the adaptation
of the system parameters to particular conditions. In this paper, we have primarily fo-
cused on the tuning phase by making the premise that the assembly phase results in a
positive intersegmental coupling between hip, knee and ankle. It is interesting to con-
sider the issue of the mechanisms underlying the assembly phase. Although bouncing
is intrinsically a rhythmic activity for which central pattern generators represent suit-
able neural structures, there is no evidence that newborn infants move their limbs in a
manner consistent with the output of central pattern generators, and indeed, sporadic
kicking movements are more plausible candidates. Given that neural oscillators are usu-
ally modeled as a set of mutually inhibitory neurons, the assembly phase could be a
process during which the topology of a vanilla-type cell assembly changes, driven by
feedback from the environment, and by a value system (based on the amplitude of the
oscillations, for instance).

With respect to the tuning phase, there is still much to do. In some sense, tuning refers
to the non-stationary regime which occurs before stabilization of movement patterns. In
other words, it is the by-product of the entrainment between neural control structure and
environment — when sensory feedback turns the system into an autonomous limit-cycle
system. At a lower level of control, tuning could also be implemented as changes in
gain or time-constants of the neural oscillators. An autonomous implementation of such



96

M. Lungarella and L. Berthouze

parameter tuning could be realized via a mechanism of Boltzmann exploration driven
by a value system (Fig.[Dright). The authors have successfully used this combination in
a pendulating humanoid robot [18].

Yet, all this may not be sufficient to hypothesize a valid model of child motor de-

velopment as there is evidence that kicking behaviors display spatio-temporal patterns.
In particular, Taga et al. [[24] recently discussed the chaotic dynamics of spontaneous
movements in human infants. Thus, formulating the development of those skills in a
dynamical systems framework would be highly desirable so that an appropriate set of
adaptive mechanisms could be implemented and tested against human data.
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Abstract. We present the hypothesis that an important factor for the
choice of a particular embodiment for a natural or artificial agent is the
effect of the embodiment on the agent’s ability to adapt to changes in
the environment. To support this hypothesis, we discuss recent empiri-
cal results where sensor morphology was found to significantly affect the
time needed for learning a given task. Also, we discuss other recent ex-
periments where a unique optimal sensor morphology could be evolved
simply by requiring that the agent had to learn its task as quickly as
possible. Both these findings are explained by the recently discovered
”Principle of Unique Local Gain Factors for Optimal Adaptation” which
provides a first step towards a general mathematical setting for under-
standing the interdependence between an agent’s embodiment and its
learning performance.

1 Introduction

Although the importance of embodiment for intelligent behavior in both animals
and robots has been realized already more than a decade ago [12] the interde-
pendence between an agent’s body (morphology, materials, etc), its brain and its
task environment is still not understood very well. For example, animals show
an abundance of different sensor morphologies and it is believed that these dif-
ferences relate to differences in the respective task environments of the animals
(e.g., facet density distributions in arthropod compound eyes can vary strongly
depending on species, sex and habitat [3]). However, so far very little is known
about this correspondence. A number of qualitative guidelines such as design
principles [4J5lJ6] have been proposed but to-date a more quantitative theory is
still lacking. In this paper we discuss implications on embodiment caused by an
agent’s need to optimally adapt to its task environment. We review recent ex-
perimental results relating learning speed to particular sensor morphologies and
discuss them in the light of a recently discovered general mathematical frame-
work describing the interdependence between an agent’s body morphology and
its learning performance.
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2 Modulating Agent-Environment Interaction by
Adapting the Embodiment

Consider the general setting of a (natural or artificial) agent interacting with
a real world environment. It is clear that this always requires the agent to be
physically embodied: the agent and its environment can only influence each other
through physical interaction. All interaction happens as a consequence of phys-
ical laws and is continuously taking place (it cannot be ”switched off”). Even a
completely ”dumb” body interacts with the environment in this way and it can
already perform certain (very simple) ”tasks” like heating itself up to the envi-
ronment’s temperature, rolling down an incline, etc. We can view the physical
interaction between an agent’s body and the environment as the fastest (inner-
most) control loop of the agent’s behavior (see figure [Il middle left, where the
thickness of the arrows symbolizes the ”bandwidth” of the interaction). However,
even this simplest type of agent can be adapted to its task and environment by
optimizing its body (shape, materials, etc). This is symbolized in the lower left
quadrant of figure [[] by the ”evolutionary fitness” feedback loop acting on the
agent’s body (”phylogenetic adaptation”).

The next more complex type of agent still only consists of a body without
any internal controller whatsoever, but this time the body itself is (continuously)
adaptive, i.e., its shape (or other properties) can be dynamically modified by the
interaction with the environment. This already allows for more complex tasks:
For example, a passive dynamic walker can ”"walk” in a ”human-like” way down
an incline simply by exploiting the complex dynamics of the physical interaction
between its moving limbs and the environment [7]. On a longer time-scale also
for this type of agent the body can be optimized for a given task environment,
for example by evolving optimal limb mass distributions (same feedback loop in
the lower left quadrant of figure [I).

In order to cope with more complex tasks and environments agents with in-
ternal controllers ("brains”) are needed. Their controller in a way "modulates”
the basic physical agent-environment interaction by dynamically modifying the
agent’s body (its shape or other properties) in a specific way, depending on in-
formation obtained from the environment through sensory inputs (outer control
loop in the top right quadrant of figure [T from ”sensory inputs” to ”effector out-
puts”). By being able to adapt its own body morphology to a given task environ-
ment this type of agent can be seen as a kind of Morpho-functional machine [§].
Sometimes different time-scales can be discriminated for this adaptation: Short-
term body control like muscle activity, and medium-term modifications like body
development, self-assembly, self-repair, etc. Depending on the speed required for
the respective control loop, the controllers could also be implemented using dif-
ferent types of substrates, e.g. electrical signals (muscle activity) or biochemical
metabolism (growth control, self-repair). Since typically the control loop of the
”brain-body interaction” is much slower than the physical interaction between
body and environment it is also useful for this type of agent to exploit as much
as possible the specific details of the physical interaction with the environment
by optimizing its body morphology (e.g., by evolving limb mass distributions)
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and only using the controller for modulating the intrinsic dynamics of the agent-
environment interaction (see e.g. [9] for an interesting application of this idea).
Again, this long-term adaptation is done through the ” phylogenetic adaptation”
feedback loop in the lower left quadrant of figure [I).

However, for this type of agents adapting the body not only has consequences
for the body-environment interaction, but it influences the body-brain interac-
tion as well: Since the controller cannot interact directly with the physical world
and can only obtain its information about the environment through the agent’s
body (by means of sensors) this means that the actual state of the body (shape,
dynamical configuration, position in the environment, etc) influences directly
what the sensors deliver to the controller. In order to successfully perform its
task in the environment therefore the agent not only needs to control its body to
modulate the physical body-environment interaction in the desired way, but it
also has to do it in a way as to generate optimal sensory inflow for the controller
in terms of information content needed. On short time-scales this amounts to
controlling the body’s actuator activity in such a way that it can collect the best
information possible, e.g., by using sensory-motor coordination [5]. On medium
and long time-scales the same goal can be achieved by creating a body shape
(e.g., a specific sensor morphology) that by its intrinsic physical properties pre-
dominantly extracts the most relevant information from the environment. This
long term adaptation can both be done ontogenetically (through development)
or phylogenetically (through evolution). In a series of earlier experiments on an
adaptive artificial compound eye we were able to show that it is possible to
evolve optimal sensor morphologies for specific tasks [TO/TTT2IT3].

3 Optimal Embodiment for Adaptive Controllers

Throughout the previous section we have been focusing on the adaptation of
the agent’s body, either through ”external” optimization (like evolution) or by
controlling its adaptation with an internal ”brain”. However, for many task en-
vironments it is advantageous to be able to adapt the controller itself as well.
While for long-term adaptation this can again be done by an ”external” process
like evolution (feedback loop in the lower right quadrant of figure [[) for short
and medium term adaptation the controller has to be able to adapt itself, i.e., it
has to be able to learn (inner feedback loop in the top right quadrant in figure
where we have abstracted all types of learning processes as adaptation of the con-
troller induced by some ”value signal”: In the same way that an effector output
can trigger an adaptation of the agent’s body an active ”value signal” can induce
a modification inside the agent’s brain). Depending on the controller’s substrate
this adaptation could manifest itself for example as neural plasticity (modifica-
tion of neural connectivity and synaptic weights) or also biochemical plasticity
(e.g., immune system ”learning”). Regardless of the actual implementation, it is
important to realize that learning is controlled by the controller itself and not
directly by the environment and therefore ultimately also depends on the infor-
mation that is provided by the agent’s sensors. Consequently, in addition to all
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Fig. 1. Schematic view of general agent-environment interaction showing the interde-
pendence of a (task) environment, an agent’s body and its internal controller ("brain”).
Only the agent’s body can directly interact with the environment. The processes de-
scribed in the rectangular boxes can adapt the "body” and/or the ”brain” of the agent
on different time-scales and in this way modulate the interaction between task envi-
ronment and body (physical interaction) and between body and brain (sensory inputs,
effector outputs). The thickness of the arrows denotes the ”"bandwidth” of the interac-
tion: thick arrows signify frequent interaction and fast control loops. Details see text.

the other interdependencies between body and brain described in the previous
section, for the case of learning the agent’s body also affects the adaptation of
the brain. In general, it seems natural to ask if the shape of an agent’s body -
especially the sensor morphology - can influence the learning performance of its
controller. Indeed, it has been found in simulation experiments on an adaptive
artificial compound eye that the time needed to learn a given task can vary by
orders of magnitude depending on the particular sensor morphology employed
by the agent [14].

These results suggest to optimize the shape of the body (and in particular the
sensor morphology) for extracting sensory information from the environment in
a way that allows the controller to learn as quickly as possible. In principle this
adaptation of the body for learning could also be done by short-term or medium-
term processes like muscle activity or body development. However, since learning
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itself is necessarily a medium-term process it is much better to optimize it by a
process on an even longer timescale (in an ”outer control loop”), e.g., through
phylogenetic adaptation by an evolutionary process. In a series of recent ex-
periments we have been evolving body shape (sensor morphology) of simulated
agents with the goal of optimizing learning performance (adaptivity) of their
controller [I5]. Sensory input from an adaptive artificial compound eye was fed
into a standard two-layer feed-forward network that had to learn a given task
using backpropagation. The time the neural network required for learning was
then directly used as fitness value for evolving the morphology of the compound
eye. It turned out that for a given task environment there was always a unique
sensor morphology which allowed the controller to learn fastest. In other words:
Only requiring from the agent that it had to learn the task as quickly as possible
(without any other constraints on its fitness) was enough to always evolve the
same unique, distinct sensor morphology specific for the given task environment.
Interestingly, this special morphology that turned out to be optimal for learn-
ing is qualitatively very similar to the morphologies found in some biological
compound eyes (e.g., in flies and bees) [3].

4 The Principle of Unique Local Gain Factors for
Optimal Adaptation

Along a theoretical line of research we were able to show recently that the results
described in the previous paragraph can actually be understood as a consequence
of a general principle that we call the principle of Unique Local Gain factors for
optimal Adaptation (ULGA). By local gain factors we simply mean dedicated
constant parameters that are multiplied to the adaptive weights in a controller
that has to learn a given problem. The ULGA principle then states that for any
given task environment where the learning problem can be described by a non-
degenerated parabolic cost function and for standard gradient descent learning
there always exists a unique optimal set of non-negative local gain factors such
that the system can learn the task in minimal time. Note that we require that
the minimum of the given cost function is non-degenerate (i.e., it consists only
of a single point in weight space), and that its location remains constant over
time (otherwise the optimal local gain factors would change over time as well).
So far the ULGA principle has only been proved for standard gradient descent
learning [16]; however, we believe that it may also hold for other (maybe more
biologically plausible) learning schemes.

A consequence of the ULGA principle for the evolution of sensor morphologies
is the following: Assume that the effect of using a specific sensor morphology is
to scale each individual sensory input channel by a specific factor. Then, for
the case of controllers with linearly weighted inputs (which include most of the
commonly used neural network controllers, e.g., all multi-layer perceptrons),
this is the same as multiplying each input weight with the corresponding factor
instead. If this is done exactly in the right way, i.e., by effectively multiplying
each input channel by its optimal local gain factor given by the ULGA principle,
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then the controller will be able to learn the task in the shortest possible time
and therefore the corresponding agent will have a very high performance in its
task environment and consequently a very high fitness.

Of course, choosing a particular morphology usually also has other effects
besides influencing learning time which can also affect the agent’s overall fitness
rating (for example, the agent could become too bulky for a certain sensor mor-
phology, the development of a sophisticated morphology becomes too expensive,
etc). However, we believe that the ability to learn a task quickly and to rapidly
adapt the controller to small changes in the task environment is a very important
factor for an agent behaving in the real world, and consequently, we think it is
very important to take the effects on learning speed into account when designing
or evolving sensor morphologies.

In the simulation experiments described in the previous section simply using
learning speed as fitness value already provided enough constraints to evolve a
unique optimal sensor morphology. The reason for this direct correspondence
is the fact that for sensing optical flow using a compound eye the local gain
factors are directly proportional to the facet density which in turn determines
the morphology of the eye.

We would like to add the following technical remark: Although the existence
of a unique set of optimal local gain factors is theoretically guaranteed by the
ULGA principle finding the actual optimal values for a given problem is usually
highly non-trivial and can in general only be done numerically using some op-
timization algorithm like artificial evolution. However, since the existence of a
unique global minimum (without any additional local minimal!) is theoretically
guaranteed finding the actual optimal values should always be possible.

5 Further Implications of the ULGA Principle

Actually, the ULGA principle is not restricted to weights associated with sensory
inputs, but it can be applied to any adaptive weight in the controller. Therefore,
the principle is also applicable for example to purely internal connections in a
neural network. In this situation the existence of a unique ensemble of optimal
local gain factors can be seen as another example of optimizing morphology for
learning speed, except that in this case not the sensor morphology is adapted but
instead part of the "morphology” of the brain - the ”gains” of the neural con-
nections - is optimized (symbolized by the ”phylogenetic adaptation” feedback
loop in the lower right quadrant of figure [T).

Taking this argument even further, we can consider the whole ensemble ”en-
vironment plus agent” as an adaptive system governed by a certain cost function.
In this way we are basically ”including the environment in the learning loop”.
Then we can apply the ULGA principle also on the effector side: If there are
a number of controller outputs where each output is multiplied by a dedicated
constant parameter (a local gain factor) and an adaptive weight (such that the
system only depends on the product of these three factors), then there exists a
unique set of optimal values for these local gain factors such that the system as
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a whole (including agent and environment) can learn the corresponding weights
in a minimum of time.

The significance of this is as follows: Assume, for example, that a controller
is driving some actuators in a way that the force delivered by each actuator is
proportional to the value of the corresponding controller output multiplied by a
dedicated weight for each output (this can easily be achieved for example with
electric motors). Assume further that the task of the agent only depends on the
kinematics of the actuators but not on their dynamics, i.e., that not the forces
itself are relevant for the system but only the acceleration of individual body
parts, i.e., the actuating force divided by actuated mass. (This can be true for
example for a robot arm that just has to follow a certain trajectory with pre-
scribed speed). Under these conditions the ULGA principle can be applied where
the local gain factors are now simply the reciprocals of the masses of the actu-
ated body parts. The principle then asserts that for each actuator there exists
a unique optimal mass for the actuated body part (e.g., for the corresponding
limb) such that the system can learn its task in a minimum of time. In this
way the ULGA principle allows (at least for some cases) to relate not only the
morphology of an agent’s sensors but also the morphology of its actuators and
controller directly to its need to adapt as quickly as possible.

6 Conclusions

In this paper we have been studying the interdependence between an agent’s
embodiment, its controller, and its task environment, with a special focus on
adaptation. For different levels of complexity of agents we have been discussing
different mechanisms (acting on different time-scales) for how an agent can adapt
to optimally perform its task in a given (partially unknown and possibly chang-
ing) environment. Throughout the paper we have been presenting examples that
suggest an important role of the agent’s embodiment for adaptation on all time-
scales and levels of complexity.

Furthermore, we believe that a large part of the highly specific embodiments
found in animals can actually be explained by the agent’s continuous need to
adapt: An agent’s embodiment can be adapted in order to directly optimize the
dynamics of the physical body-environment interaction, it can be adapted to
optimize the information content delivered by the sensors to the agent’s brain,
and it can be optimized to allow the brain to learn a task as quickly as possible.

We believe that especially the third strategy is very important: Since for
most sufficiently complex tasks the controller needs to be able to constantly
cope with small changes in the task and/or in the environment it is possibly
even more important to have a body that is optimized for fast learning instead
of simply being an optimal solution for one particular environmental situation:
An animal that can adapt its behavior faster to small changes in the environment
will have a better lifetime performance in its ecological niche.

This hypothesis is supported both by empirical results from simulation exper-
iments on an artificial compound eye as well as by a novel theoretical framework:
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The principle of unique local gain factors for optimal adaptation (ULGA). This
principle can predict the experimental results very well (evolution of a unique
morphology that is optimal for learning) and it can also be applied to a large
number of other problems in the study of the interdependence between an agent’s
morphology (sensors, actuators and controller) and its adaptivity.
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Abstract. This study is intended to deal with the interdependency be-
tween control and body systems, and to discuss the “relationship as it
should be” between these two systems. To this end, a decentralized con-
trol of a multi-legged robot is employed as a practical example. The result
derived indicates that the convergence of decentralized gait control can
be significantly ameliorated by modifying its interaction dynamics be-
tween the control system and its body system to be implemented. We
also discuss a property expected to emerge under the “well-balanced cou-
pling” particularly from the viewpoint of learning, by borrowing the idea
from the “protein folding problem”.

1 Introduction

In robotics, traditionally, a so-called hardware first, software last based design
approach has been employed, which seems to be still dominant. Recently, how-
ever, it has been widely accepted that the emergence of intelligence is strongly
influenced by not only control systems but also their embodiments, that is the
physical properties of a robots’ body[L]. In other words, the intelligence emerges
through the interaction dynamics among the control systems (i.e. brain-nervous
systems), the embodiments (i.e. musculo-skeletal systems), and their environ-
ment (i.e. ecological niche). In sum, control dynamics and its body (7.e. mechan-
ical) dynamics cannot be designed separately due to their tight interdependency.
This leads to the following suggestions: (1) there should be a “well-balanced cou-
pling” between control and body dynamics, and (2) one can expect that quite
interesting phenomena will emerge under such well-balanced coupling.

On the other hand, since the seminal works of Sims[2][3], so far various meth-
ods have been intensively investigated in the field of Evolutionary Robotics by
exploiting concepts such as co-evolution, in the hope that they allow us to simul-
taneously design control and body systems[][5]. Most of them, however, have
mainly focused on automatically creating both control and body systems, and
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thus have paid less attention to gain an understanding of well-balanced coupling
between the two systems. To our knowledge, still very few studies have explicitly
investigated this point (i.e. appropriate coupling.

In light of these facts, this study is intended to deal with the interaction dy-
namics between control and body systems, and to analytically and synthetically
discuss a well-balanced relationship between the dynamics of these two systems.
More specifically, the aim of this study is to clearly answer the following ques-
tions:

— how should these two dynamics be coupled?
— what sort of phenomena will emerge under the well-balanced coupling?

Since there are virtually no studies in existence which clearly discuss what a
well-balanced coupling is, it is of great worth to accumulate various case studies
at present. Based on this consideration, a decentralized control of a multi-legged
robot consisting of several identical body segments is employed as a practical
example. The derived result indicates that the convergence of decentralized gait
control can be significantly ameliorated by modifying both control dynamics
(e.g. information pathways among the body segments) and body dynamics (e.g.
stiffness of the spine). We also discuss an idea regarding an emergent property
expected to be observed under the “well-balanced coupling” from the viewpoint
of learning, inspired by the protein folding problem.

2 Lessons from Biological Findings

Before explaining our approach, it is worthwhile to look at some biological find-
ings. Beautiful instantiations of well-balanced couplings between nervous and
body systems can be found particularly in insects. In what follows, let us briefly
illustrate some of these instantiations.

Compound eyes of some insects such as houseflies show special facet (i.e.
vision segment) distributions; the facets are densely spaced toward the front
whilst widely on the side. Franceschini et al.[6] demonstrated with a real physical
robot that this non-uniform layout significantly contributes to detect easily and
precisely the movement of an object without increasing the complexity of neural
circuitry.

Another elegant instantiation can be observed in insects’ wing design[9][10].
As shown in Figll{a), very roughly speaking, insects’ wings are composed of
hard and soft materials. It should be noted that the hard material is distributed
asymmetrically along the moving direction. Due to this material configuration,
insects’ wings show complicated behavior during each stroke cycle, i.e., twist

! Pfeifer introduced several useful design principles for constructing autonomous
agents[l]. Among them the principle of ecological balance does closely relate to this
point, which states that control systems, body systems and their material to be im-
plemented should be balanced. However, there still remains much to be understood
about how these systems should be coupled.

2 Another interesting robot can be found in [7][S].
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and oscillation. This allows them to create useful aerodynamic force, and thus
they can realize agile flying. If they had symmetrical material configuration as
shown in Figlll(b), the complexity of neural circuitry responsible for flapping
control would be significantly increased.

hard material

/

front ...

A\
soft material
(a)
front ... hard material
H . //
body — A\
o soft material
(b)

Fig. 1. Material configuration in insects’ wings.

3 The Model

In order to investigate well-balanced coupling as it should be between control and
body systems, a decentralized control of a multi-legged robot is taken as a case
study. Fig. @2l schematically illustrates the structure of the multi-legged robot.
As shown in the figure, this robot consists of several identical body segments,
each of which has two legs, i.e., right and left legs. For simplicity, the right and
left legs of each body segment are allowed to move in phase. In addition, the
duty factoﬂ, trajectory and period of all the leg movement are assumed to be
identical, which have to be prespecified before actually moving the robot. For
convenience, hereafter the phase of the leg movement of the ith body segment is
denoted as 6; (i = 1,2,---,n). Thus, the control parameters in this model end
up to be the set of the phases 01,605, --,0,.

The task of this robot is to realize rapid gait convergence which leads to a
gait with minimum energy consumption rate from arbitrary initial relative-phase
conditions. Note that each body segment controls the phase of its own legs in
a decentralized manner, which will be explained in more detail in the following
section.

3 The duty factor is defined by the fraction of the cycle for which a given leg is in
contact with the ground.
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(a) top view

(b) side view

Fig. 2. A Schematic of the structure of the multi-legged robot employed in this case
study.

4 Proposed Method

4.1 Analysis of the Gait Convergence

Based on the above arrangements, this section analytically discusses how the
control and body dynamics influence the gait convergence. Let P be the total
energy consumption rate of this robot, then P can be expressed as a function of
the phases as:

P = P(0), (1)
0= (01,05, ,0,)7. 2)

Here, for purposes of simplified analysis, a simple learning scheme based on a
gradient method is employed. It is denoted by

aP(8)
(k) — _
A6 o0 |y (3)

where A8 is the phase modification at time step k, n is an n X n matrix
which specifies how a body segment will exploit the information about phase
modification done in other body segments in its determination of the phase
modification. Based on Equation (@), the set of the phases at time step k is
expressed in the following form:

0P (0)

(k+1) _ g(k) k) _ k) _
0 0+ 26 =6 — =52 . (4)

Let 6 be a set of converged phases. By performing the Taylor series expansion
around 0'°)| the partial differentiation of P(6) with respect to @ is:
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ore) 0o
90 ~C(6 -0, (5)
20
C¢= 9000 |g=’ (6)

where C'is an n x n Hesse matrix. Hence, the substitution of Equation (@) into
Equation () yields:

o+D — g _ pc(e®) — o'

) (7)
For the sake of the following discussion, a residual vector e®) is introduced,
which is equivalent to %) — (), Then, Equation (@) can be rewriten as:

et = Ae) (8)
A=T-nC, (9)

where I is an n X n unit matrix.

4.2 Physical Meaning of n and C

A in Equation (8) is a matrix which characterizes the property of gait conver-
gence. This will automatically lead to the following fact: for rapid convergence,
the spectral radius of A should be less than 1.0.

What should be stressed here is the fact that as shown in Equation (0]
the matrix A is composed of the two matrices: 7 and C. As has been already
explained, the matrix 7 specifies the information pathways (or neuronal/axonal
interconnectivity) among the body segments, which will be used to calculate the
phase modification. This implies that the matrix n does relate to the design of
the control dynamics.

On the other hand, it is obvious from the definition (see Equation (@) that
C' is a matrix whose nondiagonal elements will be salient as the long-distance
interaction between the body segments through the physical connections (i.e. the
spine of the robot) becomes significant. This strongly suggests that the property
of this matrix is remarkably influenced by the design of the body dynamics.

4.3 An Effective Design of the Body Dynamics

The design of the control dynamics can be easily done by tuning the elements
of the matrix n. In contrast, much attention has to be paid to the design of the
body dynamics. This is simply because one cannot directly access the elements
of the matrix C nor tune them unlike in the case of the matrix 7.

Before introducing our proposed method, let us briefly conduct a simple
yet instructive thought experiment. Imagine a multi-legged robot in which its
body segments are tightly connected via a rigid spine. In such a case, the phase
modification of a certain leg will significantly affect the energy consumption rate
of distant legs due to the effect of the long-distance interaction.
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As has been demonstrated in this thought experiment, the stiffness of the
spine generates considerable influence on the property of C, particularty the val-
ues of its nondiagonal elements. Therefore, it seems to be reasonable to connect
the body segments via a springy joint. This idea is schematically illustrated in
Fig. Bl where we only show the two body segments for clarity.

Based on the above consideration, a well-balanced design is investigated by
tuning the parameters in the matrix 17 and the ones of the springs inserted
between the body segments, which will lead to a reasonable gait convergence.

nonlinear spring

¢
)

body segment
stopper

Fig. 3. An effective structure for adjusting the body dynamics. Each body segment
can move passively along the spine owing to the springs inserted between the body
segments.

5 Preliminary Simulation Results

In order to efficiently investigate the well-balanced coupling, a simulator has
been developed. The following simulations have been conducted with the use
of a physics-based, three-dimensional simulation environment[13]. A view of the
simulator is shown in Fig. ll This system simulates both the internal and external
forces acting on the agent and objects in its environment, as well as various other
physical properties such as contact between the agent and the ground, and torque
applied by the motors to the joints.

Before carrying out a thorough search of the design parameters, a preliminary
experiment has been done to understand the influence of the two dynamics on
the gait convergence. In this experiment, the property of the spring inserted
between the body segments is assumed to be expressed as:

f=—k(Ax)%, (10)

where f is the resultant force, k is a spring constant, « controls the degree of
the nonlinearity of the spring, and Ax is a displacement.

Shown in Fig. B are data resulting from this experiment; the vertical axis
denotes the total energy consumption rate whilst the horizontal axis depicts the
number of modification of the phases conducted, i.e., the number of learning
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Fig. 4. A view of the developed simulator.

steps. Note that each graph was obtained by averaging over 10 different initial
relative-phase conditions. As a rudimentary stage of the investigation, only «
was varied under the following conditions: the number of the body segments was
5; duty factor 0.65; k£ 1.0; and 7 set to

0.0056 0.0 0.0 0.0 0.0
0.0 0.0056 0.0 0.0 0.0
0.0 0.0 0.0056 0.0 0.0
0.0 0.0 0.0 0.005 0.0
0.0 0.0 0.0 0.0 0.005

As shown in Fig. [, the gait convergence is highly influenced by the parameter
«. This is due to the fact that the long-distance interaction among the body
segments depends on «, which leads to varying the property of the matrix C.
In spite of the simplicity, these results strongly support the conclusion that the
body dynamics imposes significant influence on the gait convergence.

6 Discussions

The simulation results presented in the preceding section have demonstrated
the important effect of the coupling between the control dynamics and its body
dynamics on the convergence of the gait control. Based on this example, let us
examine the meaning of the “well-balanced design” of the control dynamics and
the body dynamics.

6.1 From the Viewpoint of Learning: Optimization of the Evaluation
Function for the Learning Exploiting the Body Dynamics

We identify the problem of the convergence of the gait control with the “op-
timization of the ewvaluation function for the control/learning process of the
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Fig. 5. Preliminary simulation results.

robots”. Here, the “evaluation function” means a quantitative measure of the
efficiency of the control method. In our case study mentioned above, this eval-
uation function corresponds to the energy consumption rate. As any control
method is aimed to optimize a scalar evaluation function, a control can be re-
garded as a minimization/maximization procedure of this scalar evaluation func-
tion by adjusting the variable parameters of the robots. The essential difficulty
in this optimization problem is the fact that the evaluation function usually has
a complex landscape with many meta-stable minima. Therefore, a useful control
method is an algorithm that can find the most stable minimum among these
many meta-stable minima within a finite time scale.

Such a problem has been well-known in the field of statistical mechanics
as a relaxation dynamics of a structurally disordered system to its equilibrium
state. A typical example is the protein folding problem. A protein molecule is a
flexible string-like material composed of an arbitrary sequence of many amino-
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acids. When a protein molecule is dissolved into water, the protein molecule
always takes its unique folding structure. This structure corresponds to the most
stable minimum of the free energy, which is expected to be a multi-dimensional
complex surface with many meta-stable minima as a result of the flexibility
and the randomness in the sequence of the amino-acidd] The “protein folding
problem” is aimed to understand the mechanism of how the protein molecule
finds the minimum of such a complex free energy landscape within a finite time
scaldll.

Recent research[12] has revealed that the free energy of actual protein does
not show a complex landscape but a funnel-like structure with the most stable
state, i.e., native structure, at the exit of this funnel (see Fig. [6)). This ensures
the following: the proteins do not have to employ a very efficient algorithm to
search for the minimum of the complex landscape because the structure of the
free energy landscape itself is so simple that even a naive algorithm, i.e., equation
of motion of each amino-acid, can find its minimum easily. In other words, only
proteins that have a funnel-shaped free energy landscape can fold to a unique
structure that shows the desired bio-chemical functions. If this is not the case,
such a sequence of amino-acids is not called a protein but a polypeptid@l.

Rapid convergence toward the native structure!

. 1l =
Converged structure /

(Native structure) Space of possible folding structure

Fig. 6. A schematic of the funnel-like landscape of the free energy observed around the
converged structure.

Now, we can draw an analogy between the protein folding problem and the
problem of designing the control mechanism of robots. The molecular structure of

4 This free energy plays the role of the scalar evaluation function in the statistical
mechanics.

5 Anfinsen insisted that the 3-dimensional folded structure of protein cannot be derived
only from the 1-dimensional sequence of amino-acids. He clarified the importance of
the thermodynamic principle of the minimum free energy in the generation of the 3-
dimensional folded structure from the 1-dimensional sequence of the amino-acids[L1].
This concept is nowadays called “Anfinsen’s dogma”.

6 Namely, only the proteins that possess bio-chemical functions indispensable for living
systems have passed the hard tests for survival through the evolution process.
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the protein (i.e. the sequence of the amino-acids) and the algorithm of searching
for the minimum free energy (i.e. the equation of motion of the molecule) can be
identified with the body dynamics and the control dynamics, respectively. This
will allow the following conclusion:

In solving the problem of controlling robots that has a complex scalar
evaluation function, it is not a good idea to only search for an efficient
algorithm, i.e., control dynamics that minimizes the complex evaluation
function. Instead, one should also adjust the mechanical structure of
the robots, i.e., body dynamics simultaneously so that the landscape
of learning surface ends up to be a simple funnel-like structure. Such a
well-balanced coupling between the body dynamics and the mechanical
dynamics will guarantee the global stability and the convergence within
finite time scale of the control method.

This approach is totally different from the concept of the recent “learning
theories” where people accept singularities in the learning surface and search
for a high-functional and sophisticated algorithm. If we take advantage of such
degrees of freedom in the body dynamics, we can modify the landscape of the
learning surface so that it does not have a singularity. This allows us to expect
that even a “cheap” algorithm can satisfy the requirements for the finite-time
convergence and the robustness. We should never forget the existence of the
physical body of robots: the design of robots does not merely imply a designing
of their “control systems”.

7 Conclusion and Future Work

This paper investigated “well-balanced coupling as it should be” between control
and body systems. For this purpose, a decentralized control of a multi-legged
robot was employed as a case study. The preliminary experiments conducted
in this paper support several conclusions and have clarified some interesting
phenomena for further investigation, which can be summerized as: first, control
and body dynamics significantly influence the gait convergence; second, well-
balanced design in this case study can be analytically discussed in terms of the
spectral radius of a matrix which specifies the property of gait convergence;
third and finally, as demonstrated in the preliminary experiments, the property
of gait convergence can be tuned by varying the dynamics experimentally, which
suggests that there should be an appropriate coupling between the two systems.

In order to gain a deep insight into what well-balanced coupling is and should
be, an intensive search of the design parameters in the control and body systems
is indispensable. For this purpose, it seems to be reasonable to implement an
evolutionary computation scheme such as a genetic algorithm to efficiently search
these parameters. This is currently under investigation. In addition to this sim-
ulations, a real physical robot is currently being constructed for experimental
verification. A view of this experimental robot is shown in Fig. [1
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Another important point to be stressed is closely related to the concept of
emergence. One of the crucial aspects of intelligence is the adaptability under hos-
tile and dynamically changing environments. How can such a remarkable ability
be achieved under limited/finite computational resources? The only solution
would be to exploit emergence phenomena created by the interaction dynamics
among control systems, body systems, and their environment. We discussed this
point by borrowing an idea from the protein folding problem. This research is a
first step to shed light on this point in terms of balancing control systems with
their body systems.

Fig. 7. A view of the experimental multi-legged robot under construction.
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Abstract. Locomotion is of fundamental importance in understanding
adaptive behavior. In this paper we present two case studies of robot
locomotion that demonstrate how higher level of behavioral diversity can
be achieved while observing the principle of cheap design. More precisely,
it is shown that, by exploiting the dynamics of the system-environment
interaction, very simple controllers can be designed which is essential
to achieve rapid locomotion. Special consideration must be given to the
choice of body materials. We conclude with some speculation about the
importance of locomotion for understanding cognition.

1 Introduction

Normally, when dealing with locomotion, the focus is on the control aspects, as is
illustrated by most of the research in the field of robotics(e.g. [1I2I8[4/56]). With
a few notable exceptions, the physical body dynamics has not been taken into
account, and has not been sufficiently exploited. As a result, most approaches
still suffer from being relatively slow and lack a high degree of adaptability
because of the enormous real-time computational requirements.

The idea of exploiting dynamics was introduced by the studies of Passive
Dynamic Walkers [78[9], which demonstrated that given certain environmental
conditions and a proper morphological design of the robot, biped walking is
possible without, or with very little, computation and actuation. Because the
Passive Dynamic Walker exploits the specific interaction with the environment
to an extreme extent, its ecological niche is very narrow: it can only walk down
a slope with a particular angle of inclination, and the friction coefficients must
be within a small range. The exploitation of the specifics of the ecological niche
always entails trade-offs: if the conditions do not hold any more, for example, if
the angle of inclination is changed, the Passive Dynamic Walker will fall over.

Previously, a set of design principles of autonomous agents have been pro-
posed [10]. In this framework, the concept of cheap design states that good
designs exploit the physics of the system-environment interaction and the con-
straints of the ecological niche, which substantially reduces the complexity of

F. Iida et al. (Eds.): Embodied Artificial Intelligence, LNAI 3139, pp. 119 2004.
(© Springer-Verlag Berlin Heidelberg 2004
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the control architecture. The mechanisms underlying adaptive behavior or intel-
ligence in general, therefore, cannot be reduced to some kind of internal represen-
tation. Rather, it is the interplay between the neural system and the “hardware”
of the body that constitutes these mechanisms. So far, the interaction between
body and control dynamics of locomotion has been only partially explored (e.g.
[TTT2IT3]), and the design principles of such a mobile robot are not fully under-
stood. Generally, cheap design, implies trade-offs which reduces the adaptability
to environmental changes, because the system is relying on the environmental
constraints. However, if interpreted properly as the exploitation of constraints,
“cheap design” can be applied to more complex behaviors.

Based on biomechanical studies, the legged systems have been investigated,
which explained the elastic components in the legs can provide the property
of self-stabilization during locomotion process [T4IHIT6IT7I8]. An interesting
aspect of this approach is that the cheap design (i.e. having passive elasticity in
the body) is employed not only for relaxing the control duty, but also to achieve
the energy efficient and rapid locomotion.

To better understand the nature of cheap design, in this paper, we investigate
the use of body dynamics with two case studies of locomotion robots, called
“Stumpy” and “Puppy”. We will attempt to extract the design principles for
achieving behavioral diversity, which is a prerequisite for an adaptive robot. As
shown in the experimental results below, a robot which properly exploits its
intrinsic body dynamics and self-stabilization mechanisms, is able to display a
high level of behavior diversity. We start by describing the design, the control,
and the various gaits of the hopping robot “Stumpy”. Then we introduce the
quadruped “Puppy” and discuss the mechanisms of self-stabilization. Finally we
discuss the relation of self-stabilization mechanisms and behavioral diversity.

2 Behavioral Diversity of a Hopping Machine

In this section we describe a new kind of hopping robot called Stumpy. Despite its
simple structure, a salient feature of this robot is its large variety of behaviord!]
In a set of systematic experiments, we will show how the behavioral diversity
can be achieved by applying the principle of cheap designﬁ.

2.1 Design and Control

Stumpy uses inverted pendulum dynamics to induce biped-like locomotion gaits.
Its mechanical structure consists of a wide base in the form of a rigid inverted
T-shape mounted on four compliant feet (Figure[d). An important feature of the
base is its springy property. An upright “T” structure is connected to this base
by a rotary joint labeled “waist”. The horizontal beam of the upright “T” is
connected to the vertical beam by a second joint, a rotary joint that we call the

! The video clips are available at: http://www.ifi.unizh.ch/ailab/people/iida/stumpy/
2 For further technical details, refer to the previous papers [T9IZ0J2T].
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Fig. 2. Intrinsic stability of Stumpy. This graph shows the time series pressure data
installed on the right and left feet (top and bottom graphs, respectively). The gait is
disturbed by an external force around time step 150. A time step corresponds roughly
to 1/20 seconds.

“shoulder”. By using this two degrees of freedom mechanical structure, the robot
is able to perform many different locomotion behaviors including hopping and
walking in a straight or curved line. Note that Stumpy does not have sensors to
recognize its global states and so it does not know what behavior it is currently
involved in. There is only local feedback that enables it to perform synchronized
sinusoidal oscillations of the two joints.

2.2 Intrinsic Stability and Behavioral Diversity

In addition to the static stability which is achieved by a wide base and four feet,
the dynamical stability is one of the major features in the behavior of Stumpy.
Figure 2] shows the time-series pressure data measured at the feet of Stumpy.
At around time step 150 an external force disturbance is exerted. The rhythmic
pattern of the ground contact is generally retrieved after a certain period of
chaotic behavior, in the figure after roughly 100 time steps.
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Fig. 3. Gait distribution diagrams. Gait distribution in Terrain 0 (a) and Terrain 1 (b).
The shadings indicate the different gates: “4”: Hopping, “3”: Walking, “2”: Shuffling,
“1”: Unstable, and “0”:Fall.
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Fig. 4. Gait distribution diagrams of the lateral bounding experiments. Gait distribu-
tion on Terrain 0 (a) and Terrain 1 (b). The texture patterns indicate the different gaits:
“6”: Hopping to Right, “5”: Hopping and Stay, “4”: Hopping to Left, “3”: Shuffling to
Right, “2”: Shuffling and Stay, “1”: Shuffling to Left, and “0”:Fall.

To explore this characteristic of self-stabilization further, we have conducted
a systematic investigation in terms of the oscillation of the waist motor and
the influence of environment. By simply changing two control parameters of the
waist and the shoulder oscillation, frequency and amplitude, Stumpy exhibits
a rich diversity of locomotion gaits. Figure [3] illustrates the variations of gaits
when the amplitude and the frequency of the waist motor oscillation are varied
in two different ground conditions (different coefficients of friction) labeled Ter-
rain 1 and Terrain 2. The gaits are categorized in terms of the time-series ground
contact data, which indicate whether both feet are off the ground at a certain
period in a gait cycle (Hopping), one foot is always on the ground (Walking),
or both feet are always on the ground (Shuffling) (The ”Unstable” gait means
that there is no periodic pattern observed in the data). In the first experiment,
we set the center of oscillation to be in the center with respect to the lower
body, and we recorded the foot pressure data during 10 seconds of operation for
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Fig. 5. Locomotion behaviors of Stumpy observed from top (The unit of these graphs
is meters). Stumpy can control its movement direction, turning rate (Top and Middle
panels), and lateral bounding (Bottom panels) by changing only a few control param-
eters. Black dots denote the trajectory of the body center, and the line illustrates the
orientation of bottom base.

every parameter setting of frequency and amplitude. As a result, we observed
four different gaits in this experiment. In a similar way, we also analyzed another
kind of behavior called “lateral bounding”. By setting the center of oscillation
laterally to one side, Stumpy shows a locomotion behavior in the lateral direc-
tion. Compared to the previous experiment, the robot showed two basic gaits,
i.e. Hopping and Shuffling, and the directionality of the movement depends on
frequency and amplitude. Figure 4 shows the behaviors observed with respect
to amplitude and frequency during the lateral bounding experiment.

So far, we used only the waist motor, but the behavioral diversity of Stumpy
can be enhanced even further by adding another degree of freedom in the shoul-
der joint. By coupling the lateral and horizontal momentum induced by the
rotary oscillation of the two motors, a hopping behavior can be achieved. While
the waist oscillation generates a periodic hopping gait, the shoulder motor can
control the horizontal forward/backward movement depending on the synchro-
nization of these two oscillations. When the phase of two oscillations is reversed,
the forward locomotion switches to backward. The turning rate can be controlled
by biasing the speed of the horizontal oscillation: For example, faster rotation
in the clock-wise direction leads to a turning movement (Figure H).

The novelty of this kind of robot locomotion lies in its unique morphology.
Because of the dynamic stability achieved by the wide springy base and the
proper body design, many different patterns of physical interactions between
the body, friction, actuation and control can be generated.
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Fig. 6. The qudruped robot Puppy. A photograph of the quadruped robot (a), and
schematic of the robot (b). The circles denote passive joints and the circles with a
cross inside denote the joints controlled by servomotors. The triangles with numbers
show the positions of LEDs which are used for visual tracking of the body geometry
during locomotion experiments.

W\\\\\W \W

Fig. 7. Behavior analysis of a running experiment. The upper graph shows the behavior
of the whole body based on the visual tracking of LEDs attached to the leg joints and
the ground contacts. The lower graph shows the trajectory of a virtual linear hind leg.

3 Self-Stabilization of Quadruped Running

Cheap design is crucial for the rapid legged locomotion in order to increase
the energy efficiency and reduce the computational cost. In this section, we
describe a four-leg robot which exploits the elasticity of its components for run-
ninﬂ. The experimental results show that the running behavior is achieved by
a self-stabilization mechanism, which can be used also for the control of forward
Velocityﬁ

3.1 Design and Control

Figure [@ shows the mechanical design of the running quadruped robot, Puppy,
which is inspired by biomechanical studies. Each leg consists of two standard
servomotors and one elastic passive joint in series, and the designs of all four

3 The video clips are available at: http://www.ifi.unizh.ch/ailab/people/iida/stumpy/
4 Refer to [22] for more technical details.
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Fig. 9. Speed diagrams of Puppy for different parameter values. Average speed vs,
phase (a) and average speed vs. frequency (b) parameters.

legs are identical. This robot carries eight motors, batteries, and a micro-motor
controller. To demonstrate a running gait, we apply a synchronized oscillation
based control scheme to four motors in the hip and shoulder, where each motor
oscillates through a simple sinusoidal position control. No sensory feedback is
used for this controller except for the internal local feedback for the servomotors.

3.2 Behavior Analysis of Self-Stabilization

The behavior of the robot was extracted by a standard visual motion analy-
sis, where the trajectories of the joints were visually tracked. Figure [7] shows a
typical locomotion behavior extracted from a side view. The legs exhibit simple
oscillations, but through the interplay of the elastic body structure, the mass
distribution, the gravity and the ground friction, a natural quadrupedal running
gait occurs, which includes periods in which all four legs are off the ground. In
other words, there is a clear distinction between a stance and a flight phase.
We found that this kind of running behavior significantly relies on the underly-
ing self-stabilization mechanism. Although the control of the robot is extremely
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simple — the controller does not recognize the stance/flight phase, acceleration,
or inclination — the robot maintains a stable periodic gait. This is due to the
fact that it properly exploits its intrinsic body dynamics. The self-stabilization
mechanism uses a unique characteristic of legs, which can be observed by the
touch-down and lift-off angles of the virtual linear leg during the stance phase.
Linear leg analysis means that the virtual line between the hip and the ground
contact is estimated (Figure[db). As shown in Figure Bb, the relation between
successive lift-off angles is roughly linear. This means that, when a lift-off angle
is lower, the subsequent lift-off angle is larger, and vice versa, which results in
a stable touch-down angle over multiple leg steps. The underlying mechanism is
implicitly contained in the entire body dynamics which has the effect that there
is a linear relation between the touch-down and lift-off angles of the legs (Figure
B), which implies that a lower touch-down angle results in a larger lift-off angle,
on average. The data shown in Figure B were collected from a series of 10 runs
of 6 leg steps.

3.3 Control of Forward Velocity

Owing to the intrinsic self-stabilization property, the control of forward veloc-
ity can be easily realized by varying a single phase or frequency parameter of
the oscillation. Figure [d shows the average forward velocity with respect to the
phase and frequency parameters of leg oscillation, which is extracted from the
visual analysis explained above. It shows that, by simply varying the phase and
frequency parameters, the velocity can be changed in the range from 20 to 50
cm/sec, approximately. It is interesting to note that this control strategy of the
forward velocity by means of the oscillation phase and frequency is one of the
simplest possible control parameters because it can be a simple time delay in
the neural substrate.

4 Discussion and Conclusion

Exploiting self-stabilization mechanisms seems to be a common strategy for
legged animals in nature and some of them have been explored in biology and
robotics (e.g. [TATHITA/TR2324]). However, the case studies shown in the previ-
ous sections provide further interesting aspects for a comprehensive understand-
ing of embodied adaptive locomotion.

Self-Stabilization and Behavioral Diversity

The simplicity of the control of Stumpy and Puppy is mostly due to the self-
stabilization mechanisms. Without sensory feedback, the locomotion processes
are maintained by properly exploiting the interaction of body material and dy-
namics (e.g. aluminium, springs, and mass distribution), environmental (e.g.
friction and rough terrain), and control (e.g. amplitude and frequency). More-
over, as illustrated in these case studies, the self-stabilization mechanisms not
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only simplify the control, but also significantly influence the locomotion func-
tion itself. In other words, sophisticated design and control is not always required
in order to achieve rich behavioral diversity. The lateral bounding behavior of
Stumpy provides a good example of how behavioral diversity can be achieved
by exploiting the body dynamics. By simply changing the oscillation frequency,
Stumpy exhibits very different behaviors in terms of gait and direction. As an-
other example, the control of Puppy’s forward velocity is no longer possible by
just varying the rotation speed of the motors, but the control parameters, phase
and frequency, have to be varied in order to influence the body dynamics.

An interesting feature of the proposed approach is the fact that there are
a few different control parameters instead of only one parameter, which can be
used for the same purposes. For example, as shown in Figure[3], the locomotion
gait of Stumpy can be controlled by both amplitude and frequency, and the same
holds for the direction and the gait of lateral bounding locomotion. The forward
velocity of Puppy also illustrates this point clearly, i.e. both parameters, phase
and frequency, are able to control the velocity. Note that these control parameters
are not controlling the locomotion function directly, but indirectly by changing
the dynamics.

In the locomotion experiments shown in this paper, Stumpy and Puppy were
operated mostly at the resonance frequencies of the systems in order to exploit
the body dynamics. However, it is clear that the other kinds of physical inter-
actions which influence the body dynamics should be considered as well. Not
only simple linear springs and rigid materials, but properties such as damping
and mass distribution need to be explored to better understand how behavioral
diversity can be achieved. In addition, it should also be mentioned that the be-
havioral diversity could be potentially enhanced further by operating the system
at non-resonance frequencies for more torque demanding stationary tasks. These
two strategies of behavior control need to be explored further as well.

Toward Embodied Adaptive Locomotion

Although we have focused on the functional aspects of locomotion in this paper,
this approach provides additional insight into embodied adaptive behavior or
intelligence in general. The control of behavior is quite often the major research
interest of adaptive locomotion, but the use of body dynamics is also a funda-
mental mechanism to properly understand behavioral diversity. As illustrated in
the case studies of this paper, the functions of the system are no longer separa-
ble from the constraints derived from embodiment, if the behavior of the robots
highly depends on its body dynamics: there is no longer a clear separation of
hardware and control. In this sense, locomotion behavior is also essential for
high-level cognition, as it enables the agent to construct a “body image” that
on the one hand can be used to guide behavior in the real world and on the
other as a basis for metaphors on top of which something like cognition can be
bootstrapped.
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Abstract. We embodied networks of cultured biological neurons in simulation
and in robotics. This is a new research paradigm to study learning, memory, and
information processing in real time: the Neurally-Controlled Animat. Neural
activity was subject to detailed electrical and optical observation using multi-
electrode arrays and microscopy in order to access the neural correlates of ani-
mat behavior. Neurobiology has given inspiration to Al since the advent of the
perceptron and consequent artificial neural networks, developed using local
properties of individual neurons. We wish to continue this trend by studying the
network processing of ensembles of living neurons that lead to higher-level
cognition and intelligent behavior.

1 Introduction

We present a new paradigm for studying the importance of interactions between an
organism and its environment using a combination of biology and technology: em-
bodying cultured living neurons via robotics. From this platform, explanations of the
emergent neural network properties leading to cognition are sought through detailed
optical and electrical observation of neural activity. A better understanding of the pro-
cesses leading to biological cognition can, in turn, facilitate progress in understanding
neural pathologies, designing neural prosthetics, and creating fundamentally different
types of artificial intelligence. The Potter group is one of seven in the Laboratory for
Neuroengineering (Neurolab?) at the Georgia Institute of Technology, all working at
the interface between neural tissue and engineered systems. We envision a future in
which mechanisms employed by brains to achieve intelligent behavior are also used
in artificial systems; we overview three preliminary examples of the Neurally-

1 http://www.ece.gatech.edu/research/neuro/
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Controlled Animats approach below. By using biology directly, we hope to remove
some of the ‘A’ from Al.
SRR R
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Fig. 1. Connecting neurons to multi-electrode arrays. Left: Cells are plated inside a glass multi-
electrode array culture dish such as this. Right: recorded voltage traces in the lighter boxes
overlay a microscope image of the neuronal network growing on a 60-electrode array (electrode
diameter, 30 um). The thick lines are the electrode leads. The voltage spikes are neural signals.

No one would argue that environmental interaction, or embodiment, is unimportant
in the wiring of the brain; no one is born with the innate ability to ride a bicycle or
solve algebraic equations. Practice is needed. An individual's unique environmental
interactions lead to a continuous 'experience-dependent’ wiring of the brain [1]. This
makes evolutionary sense as it is helpful to learn new abilities throughout life: if there
are some advantageous features of an organism that can be attained through learning,
then the ability to learn such features can be established through evolution (the
Baldwin effect) [2]. Thus, the ability to learn is innate (learning usually being defined
as the acquisition of novel behavior through experience [3]). We suggest that envi-
ronmental interaction is needed to expose the underlying mechanisms for learning and
intelligent behavior. Many researchers use in vitro models (brain slices or dissociated
neural cell cultures) to study the basic mechanisms of neural plasticity underlying
learning. We argue that because these systems are not embodied or situated, their ap-
plicability to learning in vivo is severely limited. We are developing systems to re-
embody in vitro networks, and allow them to interact with an environment, so that we
can watch the processes contributing to learning at the cellular level while they hap-
pen.

We study networks of tens of thousands of brain cells in vitro (neurons and glia) on
a scale of a few square millimeters. The cells in cortical tissue are separated using en-
zymes, and then cultured on a Petri dish with 60 electrodes embedded in the substrate,
a multi-electrode array (MEA; from MultiChannel Systems) (Fig. 1) [4], [5]. The neu-
rons in these cultures spontaneously branch out (Fig. 2). Even left to themselves with-
out external input other than nutrients (cell culture media), they re-establish connec-
tions with their neighbors and begin communicating electrically and chemically
within days, demonstrating an inherent goal to network; electrical and morphological
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observations suggest these cultures mature in about four weeks [6], [7], [8]. The neu-
rons and supporting glia form a monolayer culture over the clear MEA substrate,
amenable to optical imaging with conventional and two-photon microscopy [9], [10],
[11]. With sub-micron resolution optical microscopy, we can observe learning-related
changes in vitro with greater detail than is possible in living animals. The networks
are also accessible to chemical or physical manipulation. We developed techniques to
maintain neural cultures for up to two years, allowing for long-term continuous ob-
servation. For detailed methods, refer to [5].

Fig. 2. Microscope images of neurites (axons and dendrites) growing across a gap. The images
were taken on three consecutive days beginning the second day after plating the cells. The
black circlesare the electrodes.

A multi-electrode array records extracellular neural signals fast enough to detect
the firing of nearby neurons as voltage spikes (Fig. 1, right). Neurons detected by an
electrode can be identified using spike-sorting algorithms [12]. Thus, the activity of
multiple neurons can be observed in parallel and network phenomena can be studied.
In addition to the expression of spontaneous activity, supplying electrical stimulation
through the multiple electrodes induces neural activity; we have built custom circuitry
to continuously stimulate the 60 electrodes [13]. The MEA forms a long-term non-
destructive two-way interface to cultured neural tissue. The recorded signals can be
used as motor commands, while the stimuli represent sensory inputs, in our embodied
system. These techniques allow high resolution, long term, and continuous studies on
the role of embodiment throughout the life of a cultured neural network.

Wilson [14] coined the term "animat’ (a computer simulated or robotic animal be-
having in an environment) in his studies of intelligence in the interactions of artificial
animals. Our interfacing of cultures to a simulated environment (described below)
was the first Neurally-Controlled Animat (Fig. 3) [15], [16], [17]. For cultures inter-
faced to physical robots, we introduce the term ‘hybrot' for hybrid biological robot.
Mussa-Ivaldi's group created the first closed-loop hybrot by controlling a Khepera ro-
bot with a brain stem slice from a sea lamprey [18]. In a related approach, our Neu-
rolab colleague Robert Butera studies detailed neural dynamics by coupling simulated
neurons to real neurons using an artificial conductance circuit [19], [20]. Stephen
DeWeerth's group in the Neurolab develops and studies, among others things, silicon
model neurons interfaced with living mollusk and leech neurons [21].
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Fig. 3. Hybrot (Hybrid living+robotic) setup. Optical and electrical data from neurons on an
MEA are analyzed and used to control various robotic devices, while time-lapse imaging is car-
ried out to make movies of neuronal plasticity.

Using simulated environments is a good first step and provides easier control and
repeatability compared to robotics. However, a ‘real’ environment's great complexity
provides two advantages. First, many seemingly complex behaviors of animals are
emergent: simple behavioral rules applied in a complex environment produce com-
plex and productive behavior [22], [23], [24]. Second, a complex environment pro-
duces a robust brain to take advantage of it: among other examples, this is evident in
tool use [25] and in exploiting properties such as the biomechanics of muscle tissue in
repositioning an arm without excessive vibrations. It is difficult to simulate a complex
environment with realistic physics. If physics plays an important role in the complex
behavior of intelligent systems, then by using robots in the real world, the researcher
gets the physics "for free." We believe that this merging of artificial intelligence con-
cepts (including robotics) into neurobiological experiments can inform future Al ap-
proaches, making Al a bit less artificial.

2 Examples: Three Embodied Neural Systems

Creating a neurally controlled robot that handles a specific task begins with a hy-
pothesis of how information is encoded in the brain. Much remains to be determined,
but numerous schemes have been proposed, most based on the quantity and/or relative
timing of the firing of neural signals. A neural network may be considered as a type of
processing unit with an input (synaptic or electrical stimulation patterns), and an out-
put (neural firing patterns), which can perform interesting mappings to produce be-
havior. Below are overviews of three such systems. These examples could have been
conducted with artificial neural networks. We use biological neural networks not as
substitutes to artificial neural networks, but to tease out the intricacies of biological
processing to inform future development of artificial processing. In particular, we
analyzed how the properties of neurons lead to real-time control and adaptation to
novel environments.
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2.1 Living Neurons Control a Simulated Animal

The first Neurally-Controlled Animat [16] comprised a system for detecting spatio-
temporal patterns of neural activity, which directed exploratory movement of a simu-
lated animal in real time (Fig. 4). Neural firings were integrated over time to produce
an activity vector every 200 ms, representing the current activity pattern, and recur-
ring patterns were clustered in activity space. Each cluster was assigned a direction of
movement (left, right, forward, backward). Proprioceptive and exteroceptive feedback
via electrical stimulation was provided to the neural culture for each movement and
for collisions with walls and barriers. The stimulation induced neural activity that, in
turn, was detected through the activity vectors and used as commands for subsequent
movements. We created the software and hardware necessary to enable a 15-ms sen-
sory-motor feedback latency, since we feel it is important that a tight connection be-
tween the neural system and its environment is likely to be crucial to adaptive control
and learning.

Within this real-time feedback loop, both spontaneous and stimulated neural activ-
ity patterns were observed. These patterns emerged over the course of the experiment,
sometimes assembling into a recurrent sequence of patterns over several seconds, or
the development of new patterns, as the system evolved. The overall effect of the
feedback loop on neural activity was observed from the path of the animat's move-
ment throughout its environment (Fig. 4). As the neural network moved its artificial
body, it received feedback and in turn produced more movement. The behavioral out-
put was a direct result of both spontaneous activity within the network as well as ac-
tivity produced by feedback due to the networks interaction with its virtual environ-
ment. Hence the path of the animat was indicative of current activity as well as the
effects of feedback. Analyzing the change in behavior of the neurally-controlled ani-
mat provided a simple behavioral tool to study shifts in the states of neural activity.
However, this first Neurally-Controlled Animat did not demonstrate noticeable goal-
directed behavior, which the next example addresses explicitly.

2.2 Living Neurons Control a Mobile Robot

One of the simplest forms of ‘intelligent” behavior is that of approach and avoidance.
The goal of the second system was to create a neural interface between neuron and
robot that would approach a target object but not collide with it, maintaining a desired
distance from the target. If a given neural reaction is repeatable with low variance,
then the response may be used to control a robot to handle a specific task. Using one
of these response properties, we created a system that could achieve the goal [26].

Networks stimulated with pairs of electrical stimuli applied at different electrodes
reliably produce a nonlinear response, as a function of inter-stimulus interval (ISI).
Figure 5 shows averaged firing rate over all 60 electrodes following two stimulations
separated by a time interval. At short ISl's, the response of the network following
stimulation was enhanced; at longer intervals, the response was depressed. Further-
more, the variance of the data for each ISI was relatively small, indicating the effect is
robust and thus qualifies as a good candidate for an input/output mapping to perform
computation.



Removing Some ‘A’ from Al: Embodied Cultured Networks 135

] Neurally-Controlled Animat
2 in
High-Speed e ; ;
virtual environment
CCD Camera
Activity at the e pr—
millisecond time scale (o> == @
Motor i ’chi
output 1
MEA culture —J
the Animat's \ D
‘brain’ = ]
i
2-Photon microscope H
Morphological dynamics at the
minutes to hours time scale Sensory
Feedback
Patterned
Electrical ol
Stimuli |
FHAT
Stimulation system

Fig. 4. Animat setup and activity. Above: neural signals are used to control the movement of
an animat, whose 'brain' is exposed to microscopic imaging; feedback from the environment
determines subsequent electrical stimulation of the living neuronal network in an MEA. Below:
One hour of the animat's path (curved lines), as it moves about within its environment under
neural control, with feedback. The white boxes represent various environmental obstacles.

By mapping the neural response to a given ISI as a transformation of distance to an
object, we created a robot that reacts to environmental stimuli (in this case sensory in-
formation about distance from an object) by approaching and avoiding that target. To
construct our "approach and follow" hybrot, sensory information (the location of a
reference object with respect to the robot) was encoded in an ISl stimulation as fol-
lows: the closer the robot is to the object, the smaller the ISI. The response of the neu-
rons to a stimulation pair, measured as an averaged firing rate across all electrodes for
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Fig. 5. Living neurons control a mobile robot. Neural firings in response to paired electrical
stimulations at various inter-stimulus intervals (I1SI) are plotted. In the experiments, the ISI was
proportional to the distance between the neurally controlled approaching animat and its target
object. It was considered positive if the target was located to the right of the animat and nega-
tive if left of the robot. The neural response determined the magnitude of subsequent animat
movement; the direction of movement was determined from which quadrant the ISI fell into
(see the arrows and movement key, bottom). Inset: the neurally controlled animat's trajectory
(Koala robot, represented by the triangle). The target object (Khepera robot, represented by the
square) was held stationary until the robot approached, and then it was moved continuously
(down and to the right in the figure).

100 ms after the second stimulus, was used to control the robot’s movements: a larger
neural response corresponded to a longer movement (either forward or backward) of
the robot.

When the robot was far away from the reference object, the 1SI of the stimulation
pair was long, and the neural response was large, moving the robot towards the object
(Fig. 5, right). As the robot moved closer to the object, the stimulation interval de-
creased until it reached 150 ms. At this point, the neural response was minimal, and
no movement was commanded. In other words, the robot reached its desired location
with respect to the reference object. If the robot was closer to the object, the neural
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reaction was larger (a very short ISl), this time driving the robot away from the ob-
ject. We divided the input ISl into 4 quadrants (Fig. 5, left). Each of the 4 quadrants
corresponded to a directional movement: forward/right, forward/left, backward/right,
and backward/left. Then, a positive ISI caused movement in a direction opposite that
for a negative ISI. Given the neural response to an ISI stimulation, we decoded which
quadrant the response belonged to with good accuracy (>95%).

We used the Koala and Khepera robots (manufactured by K-Team) to embody the
cultured network, and to provide an environment with a moving object. The Koala ro-
bot was used as the neurally controlled robot, while the Khepera served as the refer-
ence object, moving at random under computer control. Under neural control, the Ko-
ala successfully approached the Khepera and maintained a distance from it, moving
forward if the Khepera moved away, or backing up if the Khepera approached

In addition to demonstrating the computational capacity inherent in cultured neu-
rons, this hybrot can be used to study learning in cultured neural networks. In this
case, learning would be manifested through changes in the neural activity and changes
at the behavioral level of the robot. Preliminary studies indicate that quantifiable be-
havioral traits, such as the speed with which the hybrot approaches the object, may be
manipulated through mechanisms of neural plasticity.

2.3 Living Neurons Control a Drawing Arm

Meart (Multi-Electrode Array art) was a hybrot born from collaboration with the
SymbioticA Research Group? The 'brain' of dissociated rat neurons in culture was
grown on an MEA in our lab in Atlanta while the geographically detached 'body" re-
sided in Perth. The body consisted of pneumatically actuated robotic arms moving
pens on a piece of paper (Fig. 6). A camera located above the workspace captured the
progress of drawings created by the neurally-controlled movement of the arms. The
visual data then instructed stimulation frequencies for the 60 electrodes on the MEA.
The brain and body interacted through the internet (TCP/IP) in real time providing
closed loop communication for a neurally controlled 'semi-living artist'. We see this
as a medium from which to address various scientific, philosophical, and artistic
questions.

Meart has brought neurobiology research to two artistic events: Biennale of Elec-
tronic Arts Perth and most recently at Artbots: the Robot Talent Show in New York.
The robotic arm and video sensors were shipped to New York while the living neu-
rons sent and received signals from Atlanta. An overview of how Meart worked may
best be described by the artistic conception behind the Artbots presentation: portrait
drawing. First, a blank piece of paper was placed beneath the arm's end-effector and a
digital photograph was taken of an audience member. Then, communication between
the arm and the neurons was begun. The neural stimulation via the MEA was deter-
mined by a comparison of the actual drawing, found using a video camera taking im-
ages of the drawing paper, to the target image of a person's photograph. Both the ac-
tual image and the target image were reduced to 60 pixels, corresponding to the

2 SymbioticA: the Art and Science Collaborative Research Laboratory (http://www.fishand
chips.uwa.edu.au/), based in the School of Anatomy and Human Biology at the University of
Western Australia in Perth.
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Fig. 6. Meart-The Semi-Living Artist. Left: Meart’s arms used markers to draw on a piece of
paper, under live neural control. In the background was a projection of the MEA and cultured
net, Meart's 'brain’. Right: one drawing created by Meart in an exhibition.

MEA electrodes, and the gray scale intensity of each pixel was found. Similar to how
an artist continually compares her work to her subject, the gray scale percentages for
corresponding pixels on the two images were continuously compared, in this case
subtracted to produce a matrix of error values. The 60 error values determined in real-
time the stimulation frequency per electrode using a custom stimulation circuit built
by Thomas DeMarse. Arm movement was determined by the recorded neural activity,
using averaged firing rates of the induced and spontaneous activity per stimulation.
Stimulation affected this neural activity, and so the communication formed a loop,
with a loop time of approximately one second.

In the prior example, the sensory-motor mappings used a stable neural property to
reliably control the robot. With Meart, the sensory-motor mappings are less well de-
fined, in the hope of demonstrating a micro-scale version of the brain's creative proc-
esses. The behavioral response of the robot sheds light on the properties of the neural
network and directs further encoding refinements. Thus, Meart is a 'work in progress'
with the sensory-motor encoding continuously being improved to demonstrate learn-
ing processes. An example drawing is shown in Figure 6. The drawings changed
throughout the life of cultures (and were different for different cultures) demonstrat-
ing neural plasticity, however, the mechanisms are still under investigation.

3 Discussion

3.1 Embodying Cultures: Theory

A Blank Slate. Since the cultured neurons were first separated and allowed to settle
onto the MEA at random, they start from a 'blank slate'. Neural structure is lost and
the function of neural activity is no longer obvious, yet neural network processing
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remains, evidenced by the complex activity patterns we have observed. For traditional
in vitro neural models, function is cloudy since activity no longer relates to or causes
behavioral states or actions. One cannot say ‘this neuron is involved in color percep-
tion” or ‘this neural structure helps to coordinate balance’ as could be said for in vivo
experiments. Artificially embodying and situating cultured neurons redefines their
behavioral function concretely.

The structure of neuronal networks is likely to be important in neuronal processing,
and changes in structure are likely to underlie learning and memory [27]. Our cultured
neurons form two-dimensional monolayers; functional importance may lie in the af-
fordances given by the three-dimensional layered nature of the cortex. We and others
in the Neurolab are pursuing the construction of 3D MEAs to support three-
dimensional cultures, as part of an NIH Bioengineering Research Partnership [28],
[29]. However, even cultured cortical monolayers (without 3D structure nor sub-
cortical regions) have demonstrated an ability to adapt following stimulation via po-
tentiation and/or depression [30], [31], [32], [33]. We are exploring using these plas-
ticity mechanisms as a means to shape the network during development, within the
Neurally-Controlled Animat paradigm, so it is no longer a blank slate.

Associations. The biological brain makes associations between different phenomena
observed through sensation, whether between various external stimuli or between the
actions of a body and their consequences, and then commands movement accordingly.
Our methods have been developed to study these processes in real time with enough
resolution to capture the dynamics of these interactions. These processes can be ex-
pressed using dynamical systems theory (DST), a mathematical framework to de-
scribe systems that change in time. For example, the formation of certain functional
structures (ocular dominance columns) in the visual cortex has been described using
Alan Turing's reaction-diffusion equations [34]. Kuniyoshi and his group explore
DST to connect sensory-motor control to the cognitive level [35]. As applied to cog-
nition [34], DST describes the mind with a set of complex, recursive filters. This op-
poses the classical cognitive concept of neural processing being analogous to a digital
computer, containing distinct storage and processing of symbols [36], [37]. DST
contends that multiple feedback loops and transmission delays, both of which are
widespread in the brain, provide a time dimension to allow higher-level cognition to
emerge without the need for symbolic processing [38]. DST is a framework compati-
ble with embodied perspectives. The dynamical systems perspective has too often
been neglected in neurobiology and cognitive sciences.

In contrast to an intact brain in an animal, cultures of neurons are isolated because
they do not contain the afferent sensory inputs or efferent motor outputs a body would
provide and therefore no longer have a world with which to reference their activity.
Under these conditions, what associations can the network make, and what would
those associations mean? Moreover, what symbols are operated on? Because of this,
any associations that are made must consequently be self-referential or circular and
neural activity may be misleading. The network as a set of complex, recursive filters
has no external signals to filter, possibly leading to the abnormal barrage activity de-
scribed below. To address this major shortcoming of in vitro systems, our neural cul-
tures are embodied with sensory feedback systems, motor systems, and situated in an
environment, providing a new frame of reference. New findings about the dynamics
of living neural networks might be used to design more biological, less artificial Al.
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Intelligence and Meaning. By embodying cultured neurons, the *‘meaning’ of neural
activity emerges, since this activity affects subsequent stimulation. Now the network
has a body behaving and producing experiences, allowing for the study of concepts
such as intelligence. We will take a behavioral definition of intelligence as our start:
Rodney Brooks describes intelligence in terms of how successfully an agent interacts
with its world to achieve goal directed behavior [39]. William James states, "Intelli-
gent beings find a way to reach their goal, even if circuitous,” [40]. Neurons have in-
herent local goals (to transmit signals, integrate synaptic input, optimize synaptic
strengths, and much more) that provide the foundation to intelligently achieve mean-
ingful behavioral goals. No doubt the basis for intelligence is inherent at birth, but an
interaction with a sufficiently complex environment (learning) is needed to develop it.

In our cultured networks, the local goals of neural interaction are subject to de-
tailed optical and electrical observation, while the execution of higher-level behav-
ioral goals are observed through the activities of the robotic body. (Note that the be-
havioral goals are artificially constrained by the stimulation and recording
transformations chosen.) We hope this combination will lead to a clearer definition
and a better understanding of the neurological basis of intelligence, in addition to ex-
planations of other psychological terms: learning, memory, creativity, etc. Neurobiol-
ogy has given inspiration to Al since the advent of the perceptron and consequent arti-
ficial neural networks, which are based on the local properties (goals) of individual
neurons. We wish to continue this trend by finding the principles of network proc-
essing by multiple neurons that lead to higher-level goals.

Network-wide Bursting. The activity of cultured neurons tends towards the forma-
tion of dish-wide global bursts (barrages) [8]: sweeps of fast, multiple neural firings
throughout the network lasting between hundreds of milliseconds to seconds in dura-
tion. These barrages have been observed often in cultured neurons [41] but also in
cortical slices [42] and in computer models [43]. Barrages of activity are reported in
the cortex in vivo during early development, during epileptic seizures, while asleep,
and when under anesthesia. These in vivo examples of barrages occur over finite pe-
riods of time. In contrast, barrages in vitro are continuous over the life of the culture.
We consider the possibility that at some stage, dish-wide barrages of spiking activity
are abnormal, a consequence of 'sensory deprivation' (manuscript in preparation), or a
sign of arrested development [44].

For both a model system [43] and for cultured mouse spinal neurons [45], if more
than 30% of the neurons are endogenously active, the neurons fire at a low steady rate
of 1 to 5 Hz per neuron, while a reduction in the fraction of endogenously active cells
leads to barrage activity. Endogenous activity is functionally similar to activity in-
duced by afferent input, suggesting embodiment would lead to low steady firing rates.
The hypothesis is then that the barrage activity may be due to the lack of an external
environment with which to interact. We are developing animat mappings in which
continuous sensory input quiets barrages, bringing the networks to a less 'sensory-
deprived' state that allows more complex, localized activity patterns.
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3.2 Thelmportance of Embodiment

The World and the Brain. Environmental deprivation leads to abnormal brain
structure and function, and environmental exposure shapes neural development.
Similarly, patterned stimulation supplied to cultured neurons may lead to more robust
network structure and functioning than with trivial or no stimulation. The most dra-
matic examples of the importance of embodiment come from studies during develop-
ment, when the brain is most malleable. Cognitive tests were performed on institu-
tionalized children in Romania, children typically deprived of proper environmental
and social interaction early in life [46], [47]. Compared to peers, the children showed
severe developmental impairment that improved, however, after transplantation to a
stable family. Those adopted prior to 6 months of age achieved nearly complete cog-
nitive catch-up to similarly aged children, while those adopted after 6 months of age
had significant but incomplete catch-up. Likewise, laboratory rats raised in environ-
ments with mazes and varied visual stimuli had 30% greater cortical synaptic density
than those raised in minimalist environments, and performed better in various cogni-
tive experiments [48], [49]. Synaptic morphology in adults [1] and adult neurogenesis
is dependent on external cues [50] demonstrating that environmental interaction is
important throughout life.

A disembodied neural culture, whose activity never influences future stimulation,
will not develop meaningful associations to an input. In the brain, if a sensation is not
useful in influencing future behavior (no association is made between the two) the
percept of the sensation fades. The environment triggers an enormous number of sen-
sory signals, and the brain develops to filter out the excess while perceiving the be-
haviorally relevant. All one-month-old infants can distinguish between the English L
and R sounds. Five months later, Japanese infants lose the ability while American in-
fants maintain it, because the distinction is not needed to understand the Japanese lan-
guage [51]. Japanese adults consequently have great difficulty distinguishing these
sounds, but perception of the distinction can be learned through targeted instruction.
These studies further demonstrate how brain (re)wiring depends on environmental
context and occurs throughout life: the brain focuses on perceiving the portions of the
environment relevant to produce a meaningful interaction.

The Body and the Brain. The choice of how to instantiate an animat or hybrot is
important to processing in cultured neural networks. For example, the body, with its
various sensory apparatus and motor output, is what detects and interacts with the en-
vironment. In addition to how different environments cause differences in the brain,
differences in the body will have analogous effects on the brain. Changes in the fre-
quency or type of sensory input via practice or surgical manipulation of the body
causes gross shifts in the functional organization of corresponding cortical areas (the
somatotopic maps) [52]. Amputation causes a sudden change to a body, and amputees
later report having at times a sensation or impression that the limb is still attached.
The impression lasts for days or weeks in most cases (years or decades in other cases)
and then gradually fades from consciousness [53]. These false '‘phantom limb' sensa-
tions arise because the brain has wired itself for a given body that has now changed.
This discrepancy further suggests the body and its interaction with the environment
influence brain wiring and cognitive function. Neurally-Controlled Animats allow an
unlimited variety of bodies to be studied; their structure and operating parameters can
be easily varied to test effects on brain-body interactions.
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4 Summary: Integrating Brain, Body, and Environment

The above paragraphs were worded as if the entities brain, body, and environment are
independent. Finding physical boundaries between the three is easy, but since the
brain is so enmeshed in the states of the body (influencing mood, attention, and
more), which in turn are so enmeshed in the body’s interaction with its environment,
finding functional boundaries between the three is difficult, if possible at all [25],
[54], [55]. Damasio contends that the mind depends on the complex interplay of the
brain and the body, and consequently emotions and rationality cannot be segregated
[56].

We have integrated our hybrots' brain (cultured network), body (robot or simulated
animat), and environment (simulation, lab, or gallery) into a functional whole, even
while the parts are sometimes 12,000 miles apart. Our experiments with these Neu-
rally-Controlled Animats so far are rudimentary: we are still setting up the micro-
scopic imaging systems to allow us to make correlations between changes in behavior
and changes in neuron or network structure; we have not yet developed sensory-motor
mappings that reliably result in learning. But in the process of creating this new re-
search paradigm of embodied, situated cultured networks, we have already sparked a
philosophical debate about the epistemological status of such semi-living systems,3
and have raised a number of issues about the validity of traditional (disembodied) in
vitro neural research. We hope that others will make use of the tools we have devel-
oped such as our MeaBench software,* sealed-dish culture system [5], and multi-site
stimulation tools [57], to pursue a wide variety of questions about how neural systems
function. We expect that these inquiries will lead to fundamentally different, more ca-
pable, and less artificial forms of Al.
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Abstract. Prosthetic care for handicapped persons requires new and reliable
robotics technology. In this paper, developmental approaches for prosthetic ap-
plications are described. In addition, the challenges associated with the adapta-
tion and control of materials for human hand prosthetics are presented. The
new technology of robotics for prosthetics provides many possibilities for the
detection of human intention. This is particularly true with the use of electro-
myogram (EMG) and mechanical actuation with multiple degrees of freedom.
The EMG signal is a nonlinear wave, and has time dependency and big indi-
vidual differences. The EMG signal is a nonlinear wave that has time depend-
ency and significant differences from one individual to another. A method for
how an individual adapts to the processing of EMG signals is being studied to
determine and classify a human’s intention to move. A prosthetic hand with 11
degrees of freedom (DOF) was developed for this study. In order to make it
light-weight, an adaptive joint mechanism was applied. The application results
demonstrate the challenges for human adaptation. The f-MRI data show a proc-
ess of replacement from a phantom limb image to a prosthetic hand image.

1 Introduction

Robotic applications in prosthetics are useful for supporting individuals who have
been disabled, particularly those who have lost limbs, sustained muscular debilitation,
or suffer nerve diseases. Advanced technology for robotics allows for controls that can
discriminate between EMG signals by using a learning paradigm that can be adapted
to many human activities. EMG patterns are unique to each individual. Therefore, an
adaptable prosthetic controller discerns subtleties in EMG signals and, in a sense,
builds a relationship through incremental learning to determine human intention. On
the other hand, an individual will, in turn, adapt to prosthetic equipment. In the case of
a lost forearm, an individual experiences a phenomenon called “phantom limb

F. lida et al. (Eds.): Embodied Artificial Intelligence, LNAI 3139, pp. 146-159, 2004.
© Springer-Verlag Berlin Heidelberg 2004
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image,” which remains for sometime.A phamtom limb image is the result of signals
perceived to be from the forearm that originate in the motion area of the cerebrum
cortex. A phantom image is a part of an individual’s body image, and it is a biological
example of the embodied Al representation of the end effectors. The human
adaptation can be observed as an effect of the prosthetic hand application by the
changes in the f-MRI images. Such a double adaptation system produces a mutual
adaptation, and gives important phenomena of the embodiment issue. This paper
shows the adaptable prosthetic system, and discusses the challenges for the mutual
adaptation.

The EMG is a bionic signal with the potential for controlling mechanical
products. The signal may be detected on the surface of a human body, and it reflects
the motion of muscles. The potentials and difficulties associated with EMG signal
patterns have been the subjects of many reports. [1, 2, 3] A small control package and
light-weight joint mechanism are demonstrated and described in this paper.

A powered prosthetic hand with many degrees of freedom (DOF) imitates a
natural hand and enhances its functionality. [4, 5, 6] Some products have already been
developed for applications in the medical and welfare disciplines. [7] These previous
applications are significant in the areas of medicine and welfare as well as robotics
and mechanical engineering because they may lead to the development of a humanoid
hand. Between industrial robotic hands and externally powered prosthetic hands, such
as those that are EMG-controlled, there are large differences in the specifications
related to size, weight, appearance, speed, power, and precision. For these
requirements, a tendon-driven mechanism was investigated. [8, 9] A proposal is
presented in this paper for the development of a prosthetic hand with 11 DOF and an
adapative joint mechanism based on a tendon-driven mechanism. A photograph of

the proposed system is shown in Fig. 1.
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Fig. 1. EMG prosthetic hand. Fig. 2. An EMG signal pattern detected from the
surface of a forearm undergoing supination.

The proposed controller for the EMG prosthetic system is based on an on-line
learning method that was developed by Nishikawa.[10] A machine that has a large
DOF is difficult to control, and the EMG signal pattern is not generally stable. An
example of an EMG signal is shown in Fig. 2. A good interface is necessary in order
to use such a machine. The on-line learning method realizes adaptive functionality for
the controller of the mechanical device. The EMG prosthetic system uses an EMG
signal in order to transmit human intentions to control the mechanical device;
however, the pattern of the EMG signal sometimes changes even if the motion of the
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hand is the same. [1, 10] This pattern is affected by the environmental temperature,
time dependence, noises, and individual differences. For these unstable difficulties,
the on-line learning method is applied in order to determine the target EMG signal
pattern that is suitable for the motion of a hand or body.

Chapter 2 shows the background and requirements for the prosthetic hand.
Chapter 3 describes the proposed adaptive joint mechanism and experimental results.
Chapter 4 describes the controller of the EMG prosthetic system and its performance.

2 Prosthetic Hand

The human forearm consists of 5 fingers, a palm, and a wrist joint. Each finger has 3
joints and 4 DOF. The palm has many joints, but the motive freedom is integrated into
one DOF. The wrist joint has 3 DOF. Therefore, in order to realize the functional level
of a human hand, the ideal prosthetic hand should have up to 24 DOF.

- \Socket

Finger part

Fig. 3. Powered prosthetic hand for forearm.

However, a prosthetic hand also has physical restrictions, such as weight, size,
and power. Different sizes should be produced, from small to large, to fit children and
adults. The weight needs to be similar to that of a real hand as well. It is necessary to
reduce the internal pressure in the socket as well as the load on the upper arm as it
supports the prosthetic hand. This demonstrates that the designed prosthetic hand must
be light. Therefore, conventional myoelectric prosthetic hands on the market’ only
have 2~4 functions, including grasping, hand opening, and wrist rotations (supination /
pronation).

The grasping power should be strong enough to grip a glass of water, a condition
that requires more than 3.5 kgecm. The objective values of the speed and torque are
also critical for a prosthetic hand. Certainly, researchers have succeeded in producing
a prosthetic hand with higher speed and power that can be more precisely controlled
than a human hand (without including the planning of hand motion). These
specifications have been achieved with no restrictions for the most part. On the other
hand, prosthetic hands currently on the market can only achieve power and speed
equal to those of a frail individual (up to 100N and 1.3 Hz when grasping).[7] This
problem originates in the actuator’s power-weight ratio. We believe that, for the
purposes of normal activities, it is not necessary for a prosthetic hand to offer high
speed and high power simultaneously. Considering the current potential of the actuator
used for a prosthetic hand, it would be adequate to supply high speed and high torque
separately through the use of a kind of torque converter. On the other hand, precision
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of control is not necessary for the prosthetic controller. This is because neither the
driver nor the amputee can control the prosthetic hand as precisely as the central nerve
system can control a human hand. One of the reasons is the low ability of the driver.
Even if it could control 10~20 motion patterns or a few joints of forces, it would be
inferior to the real motion patterns of a human hand. Another reason is that most
drivers give the amputee less feedback information; actually, they only provide visual
information. It is difficult to execute complex tasks without an adequate amount of
feedback information.

In the course of our study, therefore, an electrical prosthetic hand based on a
tendon-driven system was developed. We chose to give up the apparent advantage of
precice control in order to build a light-weight hand and complexly controlled system.
This system arranges actuators on the outside of the hand and employs wires and tubes
as transmitters because the greater part of the load of a current prosthetic hand is an
actuator (motor) arranged into the hand. This actuator reduces the load on the amputee
by shifting the center of balance from the hand to the forearm or another part of the
body. This paper presents the design of an adjustable power-transmitting mechanism
that controls the torque-velocity ratio and improves the power and speed of a
prosthetic hand. Moreover, through the enhancement of the grasping power, a
proximal joint-assisting mechanism in which distal actuators also provide force to the
proximal joint becomes available. These mechanisms make the system complex, time-
delay, and non-linear. In the case that the desired trajectory is given, feedback control,
represented by the Bang-Bang control, and canonical PID control have been suggested
as the motor control model to realize a target-reaching behavior and are in turn
employed to control the manipulators. However, when the control object contains
components that would cause nonlinear and/or time-delayed responses, these kinds of
controls would cause a large overshoot or oscillation phenomenon.
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Fig. 4. Three functions of the adaptive joint mechanism.
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3 Adaptive Joint Mechanism

A schematic diagram of an adaptive joint mechanism is shown in Fig. 5.[8] A spring
connects a frame and a guide roll of wire. The guide roll can shift proportionally to the
load. In the case of a light load, as shown in Fig. 4(b), the spring approaches the
fulcrum, making its angular velocity high and its torque low. On the other hand, in the
case of a heavy load, as shown in Fig. 4(c), the guide roll leaves the fulcrum, making
its angular velocity low and its torque high. Accordingly, the spring-connected guide
roll provides an adjustable power-transmitting function. From another viewpoint, the
adaptive joint provides a “passive adaptive grasp. [9] ” Dechev et al. indicate that a
prosthetic hand with a hard pincher requires a high and wasteful pinch force to secure
objects, hence, hands that are more flexible are needed. This mechanism adjusts a
torque-angular-velocity ratio of 1:6 in the restrictions inherent in the size of a
prosthetic hand. Furthermore, this mechanism has another function in addition to the
adjustable function of velocity and torque. As shown in Fig. 4, the passive motion
function can be obtained by precisely placing a power wire at the center of the joint
rotation.

4 Main Controller for the EMG Prosthetic Hand

The requirements for the controller of EMG prosthetic hand are summarized as
follows:
® The internal state and system parameter of controller should be changeable.
The motion functions of an EMG prosthetic hand should be improved.
The amputee should receive visual feedback of the EMG signal pattern.
The learning mechanism should function even when the evaluation is weak.
The learning speed should be fast enough for real-time change.
The proposed controller based on an on-line learning method consists of three
units, as shown in Fig. 5. The units are Analysis, Classification, and Supervision.
Analysis: This unit extracts the feature vector V from the EMG signal S.
Classification: This unit classifies the predicted motion of the forearm from the
feature vector V produced in the Analysis Unit, and it also generates the control
command 6 for the prosthetic hand mechanism. This unit receives the learning
pattern set W from the Supervision Unit, and its inner state is updated by using V.
The mapping functions of the feature vector and the control command are
determined by V.
Supervision: This unit manages the learning pattern set W for tracking the alterations
of an amputee’s characteristics. These sets are sent to the Classification Unit.
This controller employs four management methods, which are explained as follows:
I. Best selection of sensor position by entropy evaluation
This method decides the best sensor position by calculating the conditional entropy
E of learning data set ¥, which indicates the ambiguity between an amputee’s
instruction e and its feature vector V.
I1. Manual addition of a learning pattern by a teaching signal
The learning pattern set ¥ is produced by the amputee’s instruction 64, and the
feature vectors V.
I11. Automatic elimination of a learning pattern by the frequency of usage
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Automatic elimination of redundant or harmful learning data based on the scored
frequency of usage obtained by classification result 6 and feature vector V.
IVV. Automatic addition of a learning pattern by a classification result
Assuming that the motion continuous when discontinius classification results 6y is
detected; discontinius feature vector Vg is added automatically in the learning data
set V.
Therefore, this controller will be used to map the individual characteristics of an
amputee, with specific attention given to the EMG signals and the motor command
from the prosthetic hand.
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Fig. 5. The procedure of the on-line learning mechanism.

4.1 Experiment

An overview of the experimental system is shown in Fig. 6(a). The detected EMG
signal from a dry-type sensor is sent to the amp, and it is amplified 10,000 times. The
amplified signal is digitized into 12-bit data with a 1600 sampling rate by an AD
transfer board, and it is sent to the controller as the digitized EMG signal. Dry-type
electrodes are used and placed in the vicinity of the elbow, which is involved with the
origin of the forearm muscles and from which the intent to move can be detected by
EMG. Moreover, such applications can be used in the severest types of forearm
amputation. The positions of the surface electrodes on the radius, channels one/three,
and on the ulna, channels two/four, are shown in Fig. 6(b). In addition, the reference
identifiers are placed on the wrist near the hand.

The classifier is implemented by software in a PC. To send the teaching signal to
the supervision unit, a keyboard is used as its interface. A computer graphic (CG)
representation of a human hand is substituted for the prosthetic hand because the
prosthetic hand has not been developed. The subject watches the monitor and pushes
the key corresponding to the teaching motion when he determines that the prosthetic
hand is not moving as it should. The supervision unit generates three training patterns
for each teaching signal. In order to test the performance of a classification ability of
this classifier, an ability tests in which the subject controls the prosthetic hand are
carried out according to instructions presented on the monitor (Fig. 6(a)). The subject
executes one motion for three seconds in the ability test. Classification errors are
calculated from a comparison of the instructions and the control commands in the
ability test. The ability test begins when the subject determines that he is in control of
the CG. The ten forearm motions that the controller classifies contain four patterns of
wrist motion and six patterns of hand motion.
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Fig. 6. An experimental setup is demonstrated in this chapter. The proposed controller is im-
plemented by PC software. A subject pushes the keyboard to teach and watches computer
graphics (CG) on the monitor instead of the prosthetic hand. In the ability test, a subject exe-
cutes instructed motions.
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Fig. 7. A variation in entropy due to changes in the position of a surface electrode for three
subjects. The ten motions contain four patterns of wrist motion and six patterns of hand mo-
tion.
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4.2 Experimental Results 1. Selecting the Position of the Surface Electrode by
Entropy Evaluation in a Supervision Unit

The correlation between entropy evaluations calculated from all possible
combinations (2* -1) of four sensors on three subjects and the classification rates is
shown in Fig. 7. These results showed a strong correlation between the entropy and
the classification rate (a correlation factor of -0.89). The classification rate was 90%
or more when the entropy was 0.14 or less.

Moreover, there are combinations of surface electrode positions allowing low
entropy values to be obtained even when there are fewer measurement points. This
means that the selection of surface electrode positions is important for information
extraction.

5 EMG Prosthetic Hand

The proposed EMG prosthetic hand has 5 fingers and a wrist. Each finger has 3 joints;
however, the DIP joint and PIP joint are actuated by a common tendon wire. The MP
joint is actuated by one motor. Thus, each finger has 2 DOF as an active motion
control. The only thumb cmc joint is directly connected by a servo motor in order to
realize the abduction of motion. The wrist is supported by two motors that actuate
pronation/supination and extention/flexion. Therefore, the proposed EMG prosthetic
hand has 12 DOF as an active motion control. Each joint that is actuated by a tendon
wire has an adaptive joint mechanism, such as the one shown in Chapter 3. The entire
weight of the RC servo motors is 280g. The weight of the aluminum body of the hand
is 204g. The weight of the small controller and battery is 100g. The weight of the
socket and cables is 623g. The total weight is 1207g, which is almost identical to the
weight of an adult woman’s forehand.
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Fig. 8. Static of the adaptive joint mechanism

The experimental results show the statics of a proposed finger. The relationship
between the displacement of wire and the force of the actuator is shown in Fig. 8(a).
The angle (0 degrees, 45 degrees, and 90 degrees) is measured between a finger
element and the wire direction. This result shows that a bigger angle requires a longer
wire movement. The relationship between the joint torque and the force of the actuator
is shown in Fig. 12(b). This result shows that a bigger angle produces more joint
torque. If the maximum torque of an RC servo motor is 3.6 kgcm at 6V, the maximum
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torque of a finger joint is 1.1 kgcm. If there is no obstacle of finger motion, only 5 mm
of wire movement would be sufficient to rotate the finger joint at 90 degrees. The
maximum velocity of the rotation of a finger joint was 200 degrees per second by
using an RC servo motor. The maximum frequency of the tapping motion (0 to 90
degrees) of a finger obtained 1 Hz.

(@) Aluminum body of a finger part and a palm part (b) Whole products
Fig. 9. Proposed EMG prosthetic hand.

(a) Grasping Cylindrical form  (b) Grasping Elliptical form  (c) Grasping Pet Bottle

(d) Holding a Coffee Cup (e) Holding a pen (f) Having a CD Case

Fig. 10. The proposed prosthetic hand

A prototype of a prosthetic hand was developed with the use of this finger
mechanism. A snapshot of the proposed EMG prosthetic hand is shown in Fig. 9. In
Fig. 16, the following positions are shown: (a) the grasping of a cylindrical form, (b)
the grasping of an elliptical case, and (c) the grasping of a pet bottle with juice. The
proposed hand can hold 1000 cc juice in a pet bottle in a stable state. The objects were
shaken to test the grasping torque. The maximum capacity amount of juice that could
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be held in the pet bottle was 400cc. The position for holding a coffee cup is shown in
Fig. 10(c). The proposed hand grasps the cup with two fingers. The position of the
hand holding a pen to write the letter “A” is shown in Fig. 10(d). Fingers grasping a
CD case are shown in Fig. 10(e).

6 Tactile Sensory Feedback

One of the current problems with prosthetic devices is the paucity of tactile
information, which results in difficult manipulation of the prosthesis and clumsy
actions from the device. This lack of feedback limits reaction and adaption to the
changing environmental conditions. With more tactile information, robotic hands
perform better.[12, 13, 14] The application of tactile sensing on prosthetic devices has
been addressed, [15, 16] giving feedback to the controller in the case of electrical
devices. In order to obtain tactile feedback, the prosthetic hand has been equipped
with pressure sensors based on conductive silicon rubber. [17] The sensors are placed
in the fingertips and in the base of each finger (black Rubbers in Fig. 10). The signal
provided by the sensors has the following characteristics: non-linear and with
hysteresis, a working range between 15 gf and 400 gf, high sensitivity. The sensor
response graph is shown in Fig. 11. The signal from the sensors does not need to be
linear to provide enough information to regulate the grasping task.
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Fig. 11. Average of the sensor element. Fig. 12. Biofeedback using functional

electric stimulation.

Currently, for research purposes, an A/D acquisition card, with 12 bits of
resolution, makes the interface with the sensors. For practical purposes, the sensor’s
signal-acquisition process can be transferred to a microcontroller. In this study, an H8-
tiny microcontroller from Hitachi was used. The application of tactile sensors
increases the performance in the grasping tasks, enabling the controller to react to the
environment. However, still, there is a need to provide information to the user in order
to gain subconscious control of the device.[18] Having visual feedback as the only
means to confirm the performance of the task places a great burden of concentration
upon the user, making the manipulation of the prosthesis difficult and tiresome. In
hybrid systems, as well as in body-powered devices, the user has direct contact with
the prosthesis, increasing the number of channels from where the user is acquiring
information about the status of, for example, a prosthetic hand, and allowing the
generation of new paths in the brain for its control. Still, the movement of these
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devices is limited, as are their applications. Some research on biofeedback through
vibro-stimulation has been done; [19] however, habituation prevents any long-term
sensitivity to vibro-stimulation. In order to solve this problem, we proposed the use of
functional electrical stimulation (FES) as a biofeedback signal to the system user, as
the usefulness of electrical stimulation as a means of providing feedback in humans
has been demonstrated. [20] In particular, the use of the interferential current method,
in order to provide a painless signal, has also been demonstrated. [21] Due to the
capacitive properties of the skin, the resistance to an electrical current keeps an
inverse relationship with the frequency (about 4 kHz). The higher the frequency, the
lower the resistance. By applying a high frequency signal at the skin level, the
reduction of the resistance of the skin eliminates the pain reaction, thus, reducing the
rejection by the user. By using the interference, the envelope resulting from the
intersection of the two signals applied has the same frequency as the difference
between the two signals.

Our systems consist of a microcontroller, which generates the frequency signal,
and a motor driver as a transducer between the commands and the generation of the
electrical signal. We are using PALS neurostimulation electrodes (AXELGAARD),
for their reusability, self-adherence, and compliance with the non-invasive policy of
our system. The electrodes are placed as shown in Fig. 12. Currently, the commands
are generated from a personal computer, but the system can be transferred completely
into a microntroller array that can generate biosignals from a tactile sensory signal in
an independent manner.

7 Discussion: Imaging Experiment in the Adaptation of the
Prosthetic Hand

The prosthetic hand is a new tool for a forearm amputee. We investigated the learning
process to control such a machine with a high DOF. The prosthetic hand is designed
as an adaptable machine that can predict what a patient wants to do by EMG signal
processing. On the other hand, an amputee adapts to the prosthetic hand by learning
how to control it. The amputee’s reaction is observed as an activation of cortical
mapping by using functional magnetic resonance imaging (f-MRI). [22] The
topographic image of f-MRI shows broad activation and demonstrates the effect of the
application of an EMG prosthetic system. In an f-MRI room, the motion of a
prosthetic hand is projected on a screen in front of the amputee. The activation of a
primary sensory-motor area in each condition is demonstrated in Fig. 13. Before the
use of prostheses, for amputees who experienced phantom pain in a grasping task, [23]
the f-MRI demonstrated broad activation on the contralateral M1 (filling-in). On the
contrary, f-MRI images of amputees without phantom pain demonstrated an activation
shifting medially than the contralateral activation of healthy hand in Fig. 13. The use
of the prosthesis affected the location of the activation in the M1.

The experiment shows an example of cortical plastic change during the use of an
EMG prosthetic hand. Furthermore, it demonstrates the possibilities of neuro-
modulating technology. [24] This change requires mutual adaptation, and it produces
an unstable relationship between man and machine. In addition, it produces a local
minimum of parametric optimization for the classification unit of the controller. The f-
MRI image is a somatosensory status indicator of the skill level of the prosthetic
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system. The activation of the visual cortex shows the requirement for a feedback
system. Therefore, we have new challenges for the practical application of a prosthetic
system:

a) Active search is necessary for the mutual adaptation in order to build an
adaptable prosthetic system.

b) Evaluation of the skill level is necessary for the active search (Proprioception).

¢) Tactile sensory feedback should replace visual feedback.

Images were collected using a 1.5T MRI system (Signa, GE, USA) equipped with
echo-planar imaging (EPI) capabilities and a radio frequency (RF) surface coil.
Sequence parameters: gradient-echo EPI, repetition time (TR) = 5000 ms, echo time
(TE) = 60 ms, field of view (FOV) = 200 mm, resolution = 64 by 64. Eighteen
contiguous axial slices from the most rostral part of the brain with a slice thickness of
5 mm each were acquired. The subjects’ heads were immobilized using foam pads.
Forty images were obtained per slice over a four-minute period, during which subjects
alternated between 30-second periods of rest and activity. Images were analyzed by
statistical parametric mapping (SPM96) analysis.

¢) Cortical mapping during grasping EMG prosthetic hand

Fig. 13. f-MRI images of the plastic change due to amputation
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8 Summary

This paper contains a proposal for an adaptive joint mechanism and a controller based
on EMG signals for an adaptable prosthetic system. The experimental results
demonstrate that the proposed mechanism can achieve powerful enough grasping to
hold a bottle with 500 cc juice, and, in addition, to hold a CD case using two fingers.
The positions of the fingers can retain a stable grip while exterting a sliding motion
between the thumb and other fingers. The controller realized 10 patterns of finger
motion based on EMG signal patterns. The total weight was 1.2 kg, which included
the controller and batteries.

The adaptable prosthetic controller is proposed and applied to the EMG
prosthetic hand. The experiment shows that the proposed controller realized 10
patterns of prosthetic hand motion based on EMG signal classification. This controller
technology gives a new possibility to smooth the manipulation of the machines
without a switch and lever. In the experimental results, the f-MRI image demonstrated
a mutual adaptation among man and machine. The amputee feels the existence of the
forearm by the phantom limb image and adapts to the new tool during training. The
mutual adaptation creates new questions for the practical application of the prosthetic
system presented in the discussion part of the paper.

The concept of the proposed system is applied to another application to show
additional possibilities. The adaptive joint mechanism and controller are applied to the
development of a power assist device [25] for the lower back on the hip joint. The
prototype was developed, and it shows that an EMG-signal, which was detected from
the upper leg, could control the proposed device and could assist with a 30 kg load.
The total weight of the developed device was 7 kg. In future studies, we will show the
validity of the proposed controller and design using this prototype and the developed
EMG classifier. We will also examine and study the daily activities of an amputee.
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Abstract. Humanoid robots are fascinating from two points of view, firstly
their construction and secondly because they lend life to inanimate objects. The
combination of biology and robots leads to smoother and compliant movement
which is more pleasant for us as people. Biologically inspired robots embody
non-rigid movement which are made possible by special joints or actuators
which give way and can both actively and passively adapt stiffness in different
situations. The following paper deals with the construction of a compliant em-
bodiment of a humanoid robot arm, including a five-finger hand with artificial
fluidic muscles. The biologically inspired decentralized control architecture al-
lows small units to be responsible for each main movement task. The first sec-
tion gives a short introduction as to how bionics engineers think and tries to
motivate us to build compliant machines. The second section looks at mechani-
cal aspects, limitations and constraints and furthermore describes a human-like
robot arm and hand. Section 3 presents the fluidic muscle actuator of the com-
pany FESTO! The fourth section describes the decentralized control architec-
ture and the electronic components. The last section concludes the paper while
looking at further prospects.

1 Introduction

Nature has been creating sub-optimised individuals over a period of millions of years.
Therefore, in a technical sense nature itself is a massive environment of optimisation.
The question is, is it possible to understand and derive the methods underlying Dar-
winian evolution teaching and if so, can we generally manufacture products for spe-
cialized application which optimise the use of energy. Two directions are possible:
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e To use the optimisation method of nature, the “Evolution Strategy” [1] and fulfil-
ment of nature’s evolution in vitro.

e To extract the underlying methods of optimised phenotypes directly from nature
and use the underlying ideas to develop technical products.

The field of engineering science called “Bionics” is concerned with decoding ‘in-
ventions’ made by living organisms and utilising them in innovative engineering
techniques. Bionics is a made-up word that links biology and technology. However,
nature does not simply supply blueprints which can merely be copied. Findings from
functional biology have to be translated into materials and dimensions applicable in
practical engineering.

In order to build humanoids we have to look at individuals in nature with the same
proportions and environmental conditions and try not to scale the joints of a beetle,
for example, which were not designed to carry heavy weights. Nature always devel-
ops optimally, based on the respective surroundings conditions. A parakeet in the
jungle is subjected to different conditions than an eagle living in high mountainous
regions. The law of survival of the fittest determines natural selection and conse-
quently how the individual adapts to its living space. The parakeet, for example, is
not optimised to cover long distances, but rather to be beautiful and to appeal the
females.

At present there is no accepted theory or system to find bionic solutions, nor is
there an accepted approach to systematically screen for systems. Bionic designs
which currently exist owe their creation mostly to luck or scientific research over
many years.

What can we learn from nature about morphology and physiology for the design of
humanoid robots? If we concur with the law of survival of the fittest, then we believe
that only optimised individuals can exist in nature in their respective surrounding
conditions. Bionics initial task is to search for individuals in nature which have the
same characteristics as the object to be developed. In our case, we are searching for a
model of a humanoid robot arm and hand. We are thus looking for animals which are
able to hold and/or carry several kilograms and which have human-like proportions
with respect to weight and inherent compliance. When looking at the problem more
closely, the intrinsic problem is how can we produce a multiple of force which are
able to hold objects that are heavier than their own weight. This is a so-called power-
weight ratio; this ratio is about one to one for electric motors. We have found other
solutions for actuators in nature, particularly linear actuators that produce tractive
force. The power-weight ratio of these actuators is multiplicatively higher than those
known for technical actuators. Thus, it seems that nature has a better solution for our
technical problem under the given terms and conditions.

We will not look at industrial robots here, as they carry out rigid tasks among
themselves, or in contact with a technical environment. This field, called contact
stability [2-5], has been widely investigated and has presented large problems for
robotic manipulation tasks till date. Starting or dampening oscillation and performing
a task requiring rigid contact from a free movement are related questions. The prob-
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lem of contact stability arises, if one operates with rigid manipulators without spring-
like or compliant properties.

We will instead focus on human-like robots and their interaction with humans and
the environment. This contact or physical touching between robot and human is sub-
ject to special requirements as regards softness and compliance of motions. The goal
of humanoids is not to assemble printed circuit boards that are also hard for humans,
but also to master soft and energy-optimised movement in different situations of life.

If we look at the grasp movement of our own hand, we observe a transient effect
and if necessary, feelings or vision-based adjustment of the hand. These special char-
acteristics utilised when we touch demands new, innovative embodiment (morphol-
ogy) and actuators (physiology).

The difference between a machine and a humanoid is its morphology. A human is
living and can fulfil several different tasks which have special requirements in con-
struction, freedom of movement and arrangement of weight. If we assume that the
human body is an optimised structure, we have to study the load-bearing skeleton and
the load transmission via the muscle-tendon system. Both criteria together form a unit
which cannot be treated separately.

The study of the physiology of the muscle-tendon system [6-9] and its activation
by the central nervous system gives us insight into the functions and activities of the
human body. Current walking robots are heavy-weight, unproportional and unable to
accomplish human-like performance. The motor actuators located in the joints in-
crease the masses moved and accordingly the torque as well. The human muscle has a
high power-weight ratio and transmits tractive power via a tendon across special parts
of bones. There are located on the top or proximal to the centre of rotation. This leads
to less torque and the ability to carry out fast movement with respect to energy need.

A current humanoid robot project in Germany is the development and construction
of a two-arm robot called the “Zwei-Arm-Roboter” (ZAR3) in German. The third
prototype has been constructed where a right arm with hand has been attached to a
rigid spinal column.

The robot is 190 cm tall and the proportions are similar to humans of this size. At-
tention has been concentrated on its human size, anthropoid proportions and func-
tionality of the actuators. The radius of action as well as the velocity of movement is
anthropoid. The company FESTO has provided the linear actuators of the fluidic
muscles. Tendons of Dynema filaments are used to convey the tractive force to the
joints as regards tensile strength, lightweight and little bending radius.

The next section will describe the mechanical body with reference to skeleton,
joints and tendons.

2 Mechanical Aspects

The whole body has been designed by AUTOCAD and the date translated to the spe-
cial Computer Numerical Control (CNC) code and transferred to a 3 axes CNC mill-
ing machine. All parts, about 950 not including the purchased parts, have been manu-
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factured from aluminium. Aluminium is lightweight, strong enough and easy to ma-
chine.

ZARS3 consist of a base which can roll, a rigid spinal column, an upper arm, a fore-
arm and a five-finger hand (see figure 1).

Fig. 1. This shows a photograph of the current version 3 of the humanoid robot ZAR3

2.1 Base

The mobile base houses the control PC, the electronics, valves for the body actuators
and the power supply for the whole robot.
The PC in the middle of figure 2 is a geriatric Pentium | with 400 MHz but fast
enough to perform the following tasks immediately:
e Managing of the data bus activity and adhering to the time schedule
¢ Sending of defined goal angle and pressure data to each micro controller (interme-
diate steps are calculated locally)
e Monitoring of sensor data (angle, pressure) and error processing

A 15" TFT panel is located in the middle of the front cover and along with a key-
board and a mouse make up the interface to the operator.
A 5/3-port directional control valve is needed to drive each muscle. The same func-
tionality is obtained with two 3/2-port valves, which are space saving and are assem-
bled as a valve cluster. Fast relay valves of the company FESTO with a discharge of
100 I/min and a maximum switching time of 2 ms of the type MHE2 are used. Inte-
grated electronics are provided with each valve are shown in figure 2 as a black add-
on on the white valve, this facilitates a fast switching operation at increased current
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Fig. 2. The photograph above shows an inside view of the base which contains the power
supply for 24V and 5V, the electronic devices for the shoulder and arm, the air tubes for
supply and delivery directly connected to the valve cluster and the on-off valves for the shoul-
der and arm placed on a valve cluster.

consumption. A terminal block with two valve packs on each side of the block
is used to increase packing density. The inflating valves are located on the left side
the deflating valves are on the right. Only the valves for the body muscles are located
in the base, thus there are 16 valves for 8 body muscles.

The air supply is directly connected to the valve cluster (see figure 2) and is parti-
tioned into two separate air tubes, one for the body and one for the hand. This be-
comes necessary as there are body muscles which can be driven with a higher pres-
sure than the small finger muscles. The outgoing air is routed to a common tube and is
actually not won back. We presently use two different air supply alternatives. Both
alternatives are not really suitable for mobile use. Our in-house compressed air line
with 6 bar is used for stationary operation whereas we utilise standard 10 litres
200 bar compressed air bottles encased in a smart aluminium case for ‘mobile’ use.
Current small sized and noiseless air generators cannot produce the required amount
of volume flow to fill up the bigger muscles.

To increase the reliability, the power supply is physically split into one for the
electronic devices with 5V and one for the valves with 24 V. We use the switching
power supply (SPS) SPS 100PX with an output of 5V / 10 A. The 24 V output of the
SPS does not supply the required current start-up peak of the electronic driven valves.
A disadvantage of SPS is the break-down of the voltage by overload a special power
supply has been assembled for this task and facilitates the delivery of up to 20 A by
24 V.

The third version of the ZAR comprises a right hand and the associated arm and
the shoulder. The hand and arm with shoulder constitute independent units and are
steered separately. This basic concept of decentralization by many small ‘intelligent’
units is found in nature and also has advantages in technical realization. The decen-
tralized control architecture and the associated electronic components are explained in
more detailed in section four.
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2.2 Torso and Shoulder

The torso of ZAR3 only consists of the muscle assembly of the shoulder joint.

The shoulder is the most flexible joint in the human body which it achieves at the
expense of stability, less guidance of motion and less arranged limit stops as, for
example, the hip joint. The human shoulder joint allows for the placing and rotating
of the arm in many positions in front, above, to the side and behind the body. This
flexibility also makes the shoulder susceptible to instability and injury. Figure 3
shows the complexity of human shoulder joint.

Fig. 3. This shows a human shoulder. Left: Skeleton only; Middle: Skeleton with muscles;
Right: All movements of the shoulder joint may be understood as a combination of the motions
of rotation and translation in the particular plain [10].

The human shoulder is a ball and socket joint. The ball is the head of the upper
arm bone (humerus) and the socket is a part of the shoulder blade (scapula). The ball
at the top end of the arm bone fits into the small socket (glenoid) of the shoulder
blade to form the shoulder joint (glenohumeral joint). The socket of the glenoid is
surrounded by a soft-tissue rim (labrum). A smooth, durable surface (articular carti-
lage) on the head of the arm bone, and a thin inner lining (synovium) of the joint
facilitates the smooth motion of the shoulder joint.

A technical replica has proven to be a bold venture; this is because the construction
involves a group of muscles (rotator cuff) which covers the shoulder joint (see fig-
ure 3 middle) which help keep the shoulder in the socket and enable the movement of
the arm. A muscle area or the placing of muscles around the joint to imitate the hu-
man shoulder muscle-tendon system is awkward to construct and susceptible in op-
eration.

A better way to build a complex shoulder joint is to split the multi-freedom joint
into separate rotational joints each of which have one degree of freedom. These single
joints are easier to construct, can be attached directly to the muscle-tendon system
and are more rugged in use. Each of the three rotational joints spans a 2D vector
space around an axis of the Cartesian coordinate system.

Electric motors are often used to drive the rotational joints. The motor is posi-
tioned directly on each axis which results in size increase and means that the design
becomes larger than human scale. Another method would be to move the motors
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away from the joints and convey engine torque via driving belts. This approach is
legitimate and appropriate for industrial robots which do not need to move away.

Our approach focuses on anthropoid aspects which comprise biological inspired
sensors, actors, design and freedom of motion in consequence of lightweight con-
struction and functional morphology. There are no ‘natural’ rotary machines in the
animal world. Human construction utilises linear actuators in terms of muscles which
are able to contract and are consequently then shortened in length.

For one surface of revolution, two muscles are necessary for an active conducted
animation. The muscles of the x- and y-axis are arranged to revolve, rotated by the
muscles of the z-axis. The actual application of the shoulder joint is shown in the
photograph below (figure 4) where the different redirections are clarified in order to
be able to complete a 3D radius of action.

Fig. 4. Left: This is a photograph of the shoulder joint of ZAR3. The numbers 1,2 and 3 indi-
cate the tendons of the x-, y- and z-axis of the joint. Middle: Shows the relation of the rotary
directions to Cartesian space. Right: Clarification of the muscle-tendon systems and the redi-
rections caused by the mechanical constraints and the acting pulley to drive the distal segments

The construction of the x-axis (see the diagram on the right-hand side of figure 4)
of the shoulder joint allows to be able to directly calculate force and torque. The ra-
dius of action ranges from -30° when the arm is hanging down vertically (0°) and
slightly backward to 150° when the arm is stretch up vertically (180°) and slightly
forward. An extended radius would be desirable, but the actual angle measuring elec-
tronic can only provide for a radius of 180°. The diagrams show the compressed
circle and the deflection pulley where the muscle tendon system drives the belonging
distal limbs.

The y-axis, the tendons guidance system, is complex due to the arrangement of the
muscles and tendons and a common origin of the coordinate system. The tendons of
the y-axis are guided via several deflection pulleys and through the centre of the
wheel of the x-axis. The freedom of motion ranging from 0° in the vertically hang
down position up to 180° vertically stretching above.

The muscles of the z-axis rotate the whole revolver of the x- and y-axis muscles
from 45° horizontally forward up to -45° backward, limited by mechanical limit stops
to meet human restrictions.
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The aim of the arrangement of the shoulder joint and the rotational revolver is to
concentrate the mass of the actuators proximal to the centre of the torso. The smaller
the distance between mass and centre of rotation, the smaller is the inertia. This is
always a balance between displacement of mass and level of complexity. This type of
construction of the shoulder joint only allows the muscle actuators for the elbow,
wrist and hand to be placed on the arm. This results in smaller inertia, more speed of
movement and less effort required to control the movement.

The muscle pair attached to a joint in a human body is always placed proximally.
Therefore, the muscles only actuate the lower parts of the chain (distal segments) and
can be powerless. The rule is the correct placing of the actuators so that they don’t lift
themselves. The other parts of the arm have to be consequent in dealing with this
fundamental aspect.

2.3 Arm

The arm is divided into upper arm and forearm. The muscle pair for the elbow joint is
placed on the upper arm. Up to the current version of humanoid ZAR, the valves for
the rest of the arm (forearm and hand) have been placed on the outside of the upper
arm. This design has both advantages and disadvantages. On the one hand, the dis-
tance between muscle and valve should be as short as possible to compensate for
small speed loss by relay operations caused by the inertia of masses and compressi-
bility of the air. Reducing of the air hose length also leads to a reduction of unused air
in the system and the calculation effort which should primarily only depend on mus-
cle volume. On the other hand, the unnecessary mass on the arm increases the cen-
trifugal force and therefore the control effort.

Figure 5 (left) shows a photograph of the original adapted elbow joint, the diagram
on the right outlines the extracted special moving directions.

Fig. 5. Left: A photograph of the actual elbow joint is shown. Right: The redirection of the
muscle-tendon systems and the displacement of the Bowden cables (dotted lines) are traced
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Our first effort at producing an elbow joint tries to imitate the human elbow joint
using a technical solution. This turned out be difficult as the versatile joint or the link
between ulna and radius is too complex to be able to exactly copy. The analysis of the
resulting degrees of freedom facilitated the assembly of the muscle-tendon-pulley-
limb system shown in figure 5. The dotted lines in figure 5 (right) depict Bowden
cables, which allowed the tendon to be guided without the use of pulleys. This bril-
liant invention from the bicycle world facilitates the configuration of the actuators in
the best possible way and is dependent on mechanical contraction and human design.

The front muscle of the horizontal axis of the elbow joint is the biceps, the back
muscle the triceps that move the forearm. The biceps-triceps system was constructed
according to the human system. The elbow joint is technically a hinge and allows
bending and straightening but does not rotate. The coordinate system is zero on this
axis when the forearm hangs down. There are humans who can overstretch their el-
bow joint, but in order to take into account what is generally possible, the joint is
mechanically fixed at the stretched position. That allows 180° up to where the upper
arm and forearm contact and constitutes the mechanical limit.

The human twist behaviour of the ulna-radius system is a rotary motion of the
wrist which can be simplified by a joint with pulley and vertical rotation axis. This is
shown in figure 5. The range of movement is designed to be 45° in both directions.

Therefore, the forearm can be rigid and carry other equipment. In this version of
ZAR, the forearm housed the finger-muscle-revolver. The term ‘revolver’ means the
assembly of the 16 muscles around the forearm. If we consider the human model to
be ideal, all the imaginable muscles of the hand are located on the forearm bones ulna
and radius. This leads to a filigree assembly of the five-finger hand and reduces the
amount of mass. The tractive forces of the flexors and extensors of the fingers are
transferred by tendons which are embedded in connective tissue for guidance. Bow-
den cables are used to install the appropriate muscle-tendon systems to the finger
joints (phalanx). Figure 6 shows the arrangement of Bowden cables connected to the
five-finger hand.

Fig. 6. Left: A photograph of ZAR’s wrist joint with axes 1 points to a Bowden cable which
connects the muscle actuator (fixed end) with a finger root joint inside the palm. 2 points to the
tendon which drives the hand lift joint and 3 to the tendon attached to the tilt joint of the wrist.
Right: The depiction of the corresponding Cartesian coordinate system of the wrist
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The challenge of this joint is to duplicate full functionality of the human wrist with
a simultaneously simple and durable construction. All the Bowden cables have to be
concentrated in the middle of the rotation axes. The mechanical resistance in the joint
arise from the guidance of the Bowden cables to the sockets of the fingers. In par-
ticular, the tilt and lift muscle works against this rising mechanical resistance, see
arrows numbers 2 and 3 in figure 6. For this reason, we have only been able to
achieve a degree of movement of 20° in each direction. Two muscles (flexor, exten-
sor, respectively) are used to tilt and lift the joint and are arranged as pairs of antago-
nists. In the technical sense one speaks of an ellipsoid joint which is a less flexible
version of a ball-and-socket joint (shoulder).

2.3 Five-Finger Hand

The first artificial hand developed and constructed based on the archetype of the hu-
man hand was the Waseda Hand (WH-1) in 1964. Since this there have been a multi-
tude of artificial hands which are more or less anthropomorphic, anthropoid, human-
like or humanoid. The academic question regarding humanoid hands, which are not
actually humanoid in construction and function, will not be discussed here. The fol-
lowing small survey of artificial hand constructions is not exhaustive.

Many three and four finger hands with more-or-less humanoid proportions have
been designed. The Utah/MIT dextrous hand [11, 12] has a four-finger system with
16 DOF and is powered by 32 pneumatic actuators. The actuator pack is placed re-
mote from the robot hand and connected by antagonistic polymeric tendons. The
Karlsruhe dextrous hand Il [13, 14] can be considered to be a non-anthropomorphic
approach. Tendons drive the four-finger autonomous gripper. Other artificial hands
are the Stanford-JPL hand [15, 16], the Omni hand [17], the NTU hand [18], the DLR
hand [19, 20] with a semi-anthropomorphic design, the cybernetic hand prosthesis by
IST-FET [21] and the DIST hand by Genoa Robotics [22-24]. These hand projects do
not fulfil the requirements for the number of fingers, joints in the fingers and human-
like movements. However, the professional design, control architecture and function-
ality of a couple of them is convincing.

Several artificial anthropomorphic five-fingered hands have been designed with ser-
vomotors which are built into the fingers, for example, the “Gifu hand” I-111 [25-27]
has 20 joints with 16 DOF and is equipped with a six-axes force sensor at each fin-
gertip. The Gifu hand is intended to be a prosthetic application for handicapped indi-
viduals. The “Robonaut” [28], designed by NASA’s Johnson Space Center and
DARPA, is a dexterous five-fingered hand with 14 DOF and a human-scale arm. The
forearm houses all fourteen brushless motors and all of the wiring for the hand. The
prosthetic hand described in [29, 30] has 24 DOF and is controlled by EMG signals
detected from the forearm of a human handicapped individual. A tendon driven
adaptive joint mechanism adjusts velocity and torque functions by use of a spring
type wire as an elastic guide. The “Blackfingers” hand prosthesis [31, 32] is a five-
fingered hand with traditional pneumatic cylinders which function as linear actuators.
The so-called bionic five-fingered hand by FZK (IAl) [33, 34] has 13 DOF and util-



170 I. Boblan et al.

ises flexible fluid actuators [35]. This fluid actuators approach is the attempt to design
muscles similar to those of the human, but which do not have the human-like power-
weight ratio. This ratio has been improved by the “Smart Award Hand” from
SHADOW [36]. This artificial robotic five-fingered hand has 24 DOF and is com-
plete driven by air muscles from the company SHADOW. The muscle pack of the
hand is located on the forearm and use tendons to power transmission. This design
and philosophy of a humanoid hand goes in the same direction as those of ZARX.

The hand is the most complicated component of the ZAR3. Not only the small
limbs and joints of the fingers, but also the guidance of the tendons in human size
proportions render the hand the most elaborated part of the project. The hand was
assembled separately, tested on a vice and was finally attached to the arm.

The ZAR3 hand has 12 DOF without the wrist. Taking into account the diameter
size of the smallest muscle from FESTO, we decided to only attach the flexor muscle
to each finger limb and lay on the extensor as the pullback spring. This construction
does not constrict the task of grasping, but only active releasing. However, this results
in the forearm revolver being reduced in size and mass and, due to this, to a smaller
inertia of masses and control effort. A disadvantage of this concurrence is the unnec-
essary additional expenses of providing tractive force via the small muscles to over-
come the resilience of the springs. See section 3 as regards the dimensions of the
muscles.

Biological Motivation

The hand is the human beings’ door to the outside world. The loop of interaction with
the environment is that the brain manipulates the information provided by the sense
organs which then are executed by actuators to the extremities. The hand has to ac-
complish a variety of positions, operations and activities in the life of a human, to
survive the rat race. The hand has been optimised to fulfil these manifolds task in the
hundred million years of human life. The hand is able to sign, to grasp, to hold and
carry, to interact with itself, to dig, to write, to play and a lot more. It is still however
lightweight enough to run with a complete runner the 100 m in less than 10 sec. A
full-grown human hand weighs approximately 500 g and has a far greater degree of
freedom than 16.

Trials to copy the human hand have failed due to the concatenation of the many
small bones of the palm. The combination of these bones enables the palm to form a
cavity. The intention to build a human-like or biological inspired robot is to carry out
the science of Bionics. This means to abstract the amount of degrees of freedom and
to deviate from joint structures which are too complicated. The question has to be,
what joint which is easy to construct can provide the greatest degree of functionality?
Is it necessary for a robot hand to form a cavity? | do not think so. I think it is more
important to be able to hold a glass and handle it. In addition, the ability of a finger to
move in a circle around the root can be neglected.

All other joints of a human hand have been implemented to the greatest possible
extent. Each of the four long fingers has three hinge joints. The outer first and middle
joint of each finger is coupled because only very few humans can move these joints
separately. Consequently, eight muscle actuators are required. All four long fingers



A Human-Like Robot Hand and Arm with Fluidic Muscles 171

are coupled at their roots by a spreading mechanism actuated by one muscle. The
fingers fan each other at the same angle around the middle finger which constitute the
fixed base. This artifice simplifies the matter and retains the relation. The different
spreading of the fingers is also a challenge for humans. One can observe that the
middle finger is fixed on one’s own hand. The thumb has two hinge joints and a sad-
dle joint at the root; therefore only three muscle actuators are required. Altogether,
12 muscle actuators fulfil full functionality of a real human hand. Figure 7 (below)
shows the hand of ZAR3 in comparison to bones of a real hand.

Fig. 7. Left: A photograph of the five-finger hand in home position. The dark spots between
lighter surfaces are recesses to afford the bending of the phalanxes. Right: A view of the bones
of a human hand is shown; the similarities are clearly visible

The size, weight, morphology and functionality are similar to the human hand and
as well the radii of action. The artificial hand can grasp things and hold several poses.

3 Fluidic Muscle Actuator

The idea of an inflatable rubber tube to facilitate shortening is not new.

The McKibben muscle actuator [37] was developed in the 1950s and 1960s. The
deflated rubber tube was not stiff enough to hold the shape itself, which means with-
out an amount of air inside, the muscles kink off and have to firm up additionally.

The company SHADOW attempted another approach. This muscle actuator is also
flexible, but is wrapped in a tough plastic weave to hold the cylindrical form. How-
ever, an exact deformation across the whole length and diameter and according to this
a geometric measurement is not possible.

A large company called FESTO have constructed a fluidic muscle actuator over
the last few years using the above-mentioned characteristics. This muscle sufficiently
meets the requirements of dimensional stability, quantity of shortening and light-
weight construction.
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A muscle actuator works as a linear actuator and has advantages compared to a
hydraulic cylinder and an electric motor with leverage. The hydraulic cylinder has
significantly more weight, can start without jerking and has no disagreeable leakages.
The electric motor can be placed directly at the joint without leverage which leads to
an increase of mass and consequently, to greater control effort. A motor does not fit
the necessary requirements for a humanoid or human-like robot. The task is to try to
emulate or to pattern the functionality, physiology and morphology of the muscle-
tendon-bone system of a human. This consequent approach can lead to a rather more
human-like robot if we agree with the law of Darwinians survival of the fittest in
natural evolution. To address the issue of why this is the case and why an electric
motor does not meet these requirements will not be discussed here.

The company FESTO officially provides three different sizes of muscle actuators,
namely MAS-40/20/10. A smaller version, MAS-5, is currently being prepared for
realise. Only the MAS-5/10/20 is used in our robot ZAR3. The number 5 indicates the
inside diameter in millimetres. All muscles have the same characteristic, that is the
shortening contraction to the acting force dependent on the level of compressed air
inside the muscle. This relationship is shown in the following (figure 8).
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Fig. 8. This diagram shows the relationship of the possible produced tractive force in Newton
to lift up something to the affordable contraction rate expressed in percentages of the basis
length by a given working air pressure in bar of the fluidic muscle MAS-20

This non-linear interrelationship is commonly depicted as force F in Newton over
contraction Al in percent with supplied air p,, in bars as constant parameter. The
greater the affected force by a constant air pressure, the smaller the shortening re-
ferred to as base length L, of the muscle rubber tube. Moreover, the higher the air
pressure by a constant force, the greater the shortening. These relationships can
roughly be described as follows
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pair

Al/L,

F o

(1)

The McKibben muscle has been extensively researched as regards static modelling
and geometric calculations [38-40]. Static physical modelling can take over the char-
acterization of the fluidic muscle from FESTO, however it uses the new measured
data and some adapted details of the behaviour of the MAS. The dependence of the
produced force of the muscle on geometric quantities such as volume, braid angle and
diameter is common to models and is merely of theoretical value.

Although we have not undertaken this in our paper, in order for exact modelling
the measured sets of force, air pressure and contractions concerning the time are re-
quired. In our opinion, the braid angle at a certain length of the muscle to predict the
produced force in this position is not need. Based on the relationship of force, pres-
sure and length determined by a proper invertible model, we have been able to make
a model and then control the muscle actuator. Such an approach results in a non-
linear interrelationship which can be dealt with in several ways.

The most acceptable approximation is achieved by an engineering approach using
a spring system [38]. The actuator can be considered as an elastic element of variable
stiffness where the force is a function of the pressure and the length. Stiffness
k=dF/dL is proportional to the pressure and stiffness per unit pressure k~dk/dP=k(p)
which results in

F.—F
I F, p)= I-malx - : 2
(F.p) ko) @)

The length L is the theoretically possible maximum length when F at its maxi-
mum. Due to the decreasing of muscle stiffness when air pressure is increased, the
maximum values of force and length have been used. This dependency is the inverse
of the behaviour of a general spring. Stiffness directly depends on the air pressure.
Stiffness in respect to force can be neglected in a first approximation. The emphasis
in this approach is to concentrate on the modelling of the variable stiffness.

The maximum specified air pressure for the FESTO muscle is 9 bar for the MAS-
10 and 7 bar for the MAS-20. The operating range expressed in terms of force is
400 N for the MAS-10 and 1200 N for the MAS-20. MAS-5, the smallest muscle, has
not yet been specified. Detailed information can be found on the website of the com-
pany FESTO (www.festo.com).

The dimensioning of the muscle type, length and the deflection pulley are the most
important tasks in order to fulfil the requirements as regards radius of action, velocity
of movement and, in the end, the dimension of the possible weight to be lifted. Due to
being scaled to human proportions, the type and the length of the muscle is limited.
The relationship between muscle length and radius of the deflection pulley has been
well defined and is calculated beforehand. The smaller the pulley, the smaller the
length of the muscle can be, however the muscle must be the most powerful. If C is
the centre of rotation of the joint, F,,, the produced force of the fluidic muscle, G the
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weight of the actuated limb and F_ the load force, then the equation of torque can be
depicted as follows:

ZMCZOZFFM'IFM G-l —F - 3)

The values of G, | and |, are fixed and cannot be changed by human proportions
and known mass of aluminium and equipment. The estimate of F, depends directly on
the carrying power of the humanoid and has to be completed before designing the
robot whole. The other two variables have to determine iteratively.

Shoulder

The more powerful MAS-20, 400 mm in length, has been assembled for use as the
shoulder joint. A length of 250 mm is sufficient for the smaller range of the z-axis.
When considering the required space and that a second arm will be added in the fu-
ture, the MAS-20 seems to be the best choice as regards diameter size, particularly
when all muscles are inflated.

The question is now how long should the muscle be and what should the diameter
of the pulley be. A reasonable trade-off is that all the joints of the shoulder should
have a diameter of 50 mm. This allows the muscles to have a short length of 400 mm
but ensures that they have enough power to lift the payload in the critical weight
range. The lifter muscle (flexor) of the x- and y-axis in particular has limitations as
regard load. The extensor muscle guides the descent of the arm with the help of grav-
ity. The extensor muscle’s major task is to control stiffness and compliance of mo-
tion. The more this muscle pulls against the flexor, the stiffer the motion. This proce-
dure puts the fringe range of the produced amount of force of the flexor into perspec-
tive. The most advantageous thing is that the critical area of muscle shortening has
not been attained even when the arm has been extended forward to a 90° angle, that is
where the extensor muscle has to generate maximum power. The muscle contraction
only reaches the critical level once the arm has reached an angle of around 120°. The
muscles of the z-axis of the shoulder can be designed to be smaller as the torso itself
holds the mass of the arm and only the horizontal motion has to be executed.

Elbow
The elbow joint can be calculated similar to the y-axis of the shoulder. As the one of
the ZAR3’s tasks is to be able to lift a glass of beer, the elbow joint is also assembled
using the MAS-20. The shoulder hangs and only the biceps lift up the payload, in-
cluding the revolving forearm and hand. The maximum angle for lifting is controlled
to 135° to allow an ulna-radius action which doesn’t become mechanically stuck. The
diameter of the pulley is set to 50 mm and the muscle length to 220 mm. The smaller
radius of action allows a shorter muscle length to achieve this human motion. A pair
of muscles called ‘agonist’ and ‘antagonist’ drives the motion of rotation of the ulna-
radius system. This joint works as well as the elbow joint, the difference being in the
axis of rotation. The assembly is described above in section two.

The dimensioning of the muscle type, length and diameter of the pulley follows the
same principles as above. The rotation process does not have to lift or hold a mass,
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but is responsible for adjusting the hand’s posture and to act with the payload. Due to
the number of air pipes which guide via this joint, the diameter of the pulley has to be
limited to 30 mm in order to achieve human-like proportions. Consequently, the
shorter muscle length of 200 mm and the power of a MAS-10 seem to be sufficient
for this task, also as regards the redirection of force using a Bowden cable (see fig-
ure 5).

Wrist and Hand
The MAS-5 muscle is the only way a hand as sufficiently compact to be of human
scale can be achieved. The extent of the 16 fully inflated muscles and mechanical
fixings is minimally thicker in diameter to that of a full-grown male. The length of the
muscles varies in two steps, from 80 mm to 110 mm. The four muscles in agonist-
antagonist construction of hand up/down and hand tilt left/right are longer to afford
more force enabled by a larger level arm and by the use of larger 16 mm pulleys.
According to the developmental department of FESTO, the MAS-5 can pull up to
50 N. This specification has established by a vertical experiment in ideal conditions
without deflection pulleys. In real-life applications, only a fraction of this tractive
force of a MAS-x can be achieved and can be calculated in terms of equation (3).

4 Electronics and Control Architecture

The electronic components, the communication to the controlled PC together with the
architecture to manage and control tasks which is what defines when a machine is a
robot and is the counterpart to the human brain and the central nervous system. Engi-
neers till date have not been able to reproduce this data flow and communication
network in vitro. The task will be to assemble, place and manage electronic parts in
the same way as to achieve results similar to that of the human. Many small activities
and reactions are not controlled by the brain, but rather initiated by the spinal cord or
local reflexes. The advantage of this is faster reaction time; specialized distributed
units can be used as a paradigm to design decentralized control architecture. This
approach applied to a technical system is tolerant of failure, enables short distances in
the sensor-control-actuator loop and provides for command structure and control
hierarchy.

The robot ZAR3 is divided into two units, completely separately assembled and
controlled, one for the five-finger hand and one for the arm and shoulder. Both units
have identical circuit devices and functional range. Each functional unit consists of
two communication directions and can be addressed both separately and independent
of each other. The differences lie in the amount of driven outputs, the physical subdi-
vision of input-output channels and the user-defined software of the controller. A
diagram of the structural components and communication channels are shown below
(figure 9).

The body electronics for reading sensors and driving the valve-muscle actuators
are located in the base and is arranged on one printed circuit board.
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The hand electronics are separated into a sensor input board and an actuator output
board to drive the muscle valves. The hand electronics, located on the upper side of
the palm, process the data signals from each measured finger joint. The associated
output board is placed near to the upper arm valve block on the shoulder.

Angle Angle  Pressure
Sensors Valves Sensors  Sensors Valves
3 r' N
36 SPI 36 PWM 4 SPI 8 SPI 16 PWM
5 Driver 2 Driver
y v \4
PIC- PIC- PIC- PIC- PIC-
18F458 18F458 18F458 18F458 18F458
‘ CAN-T/R ‘ ‘ CAN-T/R ‘ ‘ CAN-T/R ‘ ‘ CAN-T/R ‘ ‘ CAN-T/R ‘
PC Hand Am Body

I CAN-Bus

Fig. 9. The above shows a schematic plan of the connections of the hand (left) and shoulder-
arm (right) electronic devices. The hand consists of two boards, one for sensor inputs and one
for valve outputs, which communicate via CAN. The shoulder-arm electronic, in brief ‘body’,
is configured as one printed board and located in the robot’s base

The angle sensor uses a magnet, placed on the distal part of the joint, which rotates
closely below a sensitive array. This array is implemented as integrated circuit to
detects the changing magnetic field and works as a magneto-resistive sensor. This
non-linear relation compensates for temperature and is linearized at the sensor spot.
The communication protocol Serial Peripheral Interface (SPI) from each angle trans-
mitter is used to transmit the digitalized angle sensor data directly to the PIC micro
controller 18F458 from the company MICROSHIP. The SPI interface is used as it
requires less effort to wire, has a high data rate and as it provides the possibility of
connecting to the controller. The three-wire-bus consist of two data and one clock
signal and works in the master-slave-mode.

The two PIC 18F458 controllers, each concerned with one signal path, communi-
cate via the Controller Area Network (CAN) bus and shares the effort of data proc-
essing, executing of control loop and generating of Pulse Width Modulation (PWM)
signals. The CAN transceiver/receiver allocates the signal level to the physical bus.
Driver devices, each of which have eight outputs, realize the 24 V output level for the
electronic driven valves and must provide up to 1 A inrush current per valve. To drive
each valve, electronics are needed on the one hand to supply current demand and, on
the other hand, to enable the height switching time of the PWM output.

The strict separation of different components and data directions enables speedier
troubleshooting and is a first step towards of decentralization. The distribution of
responsibilities and the break down of information handling reduced data activities on
the bus and the complexity of the units. The fast response time of an unit in a control
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loop in case of emergency cannot be affected by a fewer crucial task of monitoring or
finger play. The remote unit receives a command from the control PC or from another
unit via CAN-bus and decides about which operations to be done. Without any errors,
the unit will initiate the appropriated control loop to reach the demanded goal angle.
This stand-alone execution can be interrupted by the control PC or by an exceeded
sensor limit value. The CAN-bus only serves as asynchronous communication chan-
nel of control and information messages not for the synchronous control loop be-
tween sensor, controller and actuator. The transmission of the entire control loop data
via CAN-bus leads to an exceeding of the data rate specification of CAN of
1 Mbit/sec at the latest by triggering of the second arm. However, there is a possibil-
ity to use the CAN-bus which is carried out between the palm and shoulder board for
the hand control loop. The next generation of ZAR will prevent this issue.

5 Conclusion and Future Prospects

It is far more difficult to design a practicable human-like robot than it would at first
seem to be. Being constrained to human-like proportions increases the manufacturing
effort which is compounded by being able to find practicable analogies and solutions
for geometrical and functional interrelationships in human morphology and physiol-
ogy. This has to lead to a completely new process of thought. The science of Bionics
aims at analysing the methods behind the processes and to translate them into a prac-
ticable technical solution; this helps to construct machines which are similar to the
model in nature, particular as regards excellence in shape and function.

This manuscript introduces the humanoid robot ZAR3, the mechanical design and
development process is explained and constraints and limitations pointed out. A prac-
ticable artificial fluidic muscle is briefly proposed and the fundamental correlation of
length, force and pressure introduced.

Evident constraints such as the valve block on the upper or the too faint biceps
muscle have arisen already during the construction and test phase. These features will
be modified in the next version, the ZAR4. In addition, the mechanical effort in pro-
ducing the many small parts will be decreased as well as increased simplification of
the joints will be promoted. Once the second arm is completed, attention will have to
be turned to the control architecture, to converge the conventional information proc-
essing in the human nervous system and neuronal processing. The participation of
more units or subunits increases traffic on the signal bus and the increase in detail
could be the next assignment to meet the requirements for fault tolerance, reliability
and prioritisation of the data.

Acknowledgement. The company FESTO AG & Co. KG which supports the work
on the various versions of the robot ZAR.
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Agent-Environment Interaction in Visual Homing
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Abstract. This study illustrates how obstacle avoidance can emerge from a visual
homing strategy, caused by the intrinsic geometric structure of the environment.
An example is shown where an agent performs visual homing in a virtual environ-
ment with several obstacles which also serve as visual landmarks. The agent has
omnidirectional vision similar to many prey animals. The applied visual homing
strategy is the Average Landmark Vector (ALV) model by Lambrinos et al.[1].
When observing the homing trajectories of the agent, it can be seen that it per-
forms obstacle avoidance without having this behaviour explicitly encoded. It will
be shown that the dynamic feedback the agent gets from its environment is crucial
for this kind of behaviour.

1 Introduction

Obstacle avoidance in animals evolved soon after the first living creatures started
to move. Even bacteria such as E.coli perform attractent or repellent behaviour.
By doing so, they can move towards certain objects (or chemicals in this case),
avoid others, and consequently perform obstacle avoidance. In artificial agents,
obstacle avoidance is considered as one of the most basic behaviours, and was
already present among the earliest autonomous mobile robots, such as the turtles
‘Elsie” and ‘Elmer’ built by Grey Walter [2] (see Figure [I). For moving, they had
two propulsion wheels and one steering wheel; as sensors, one light and one touch
sensor were used. The robots’ control system was completely analogue, and they
could perform two main actions: obstacle avoidance, by retreating on contact, and
light following. These simple behaviours in combination with an interaction with the
environment led to other kinds of behaviour which are perceived as very complex
and even intentional by outside observers. For example, by placing a lamp on each
turtle’s shell, a kind of ‘social behaviour’ emerged from the interaction of the two turtles.

Since the pioneering work of Grey Walter, increasing numbers of robots have been
built in order to understand adaptive behaviour in the real world. The new interest in
embodied artificial intelligence (EAI) builds on this early work, and recognised the
importance of interaction with the real world. In this chapter, | will present an example
of agent behaviour that profits from the interaction with the environment in a way
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F. lida et al. (Eds.): Embodied Avrtificial Intelligence, LNAI 3139, pp. 180-I85] 2004.
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Fig. 1. Second generation turtle designed by Grey Walter. Its main two behaviours are obstacle
avoidance and light seeking (picture taken from the Grey Walter Online Archive [3]).

that has not been anticipated by the designer. The example shows an agent navigating
back to its home location by means of visual homing. What makes this experiment
particularly interesting is the fact that this agent gets obstacle avoidance “for free”
through the interaction with the environment and intrinsic geometric properties.

2 An Example: Navigation and Emergent Obstacle Avoidance

In this section, | introduce the emergence of obstacle avoidance induced by a behaviour
which is usually considered as being on a higher level than pure obstacle avoidance:
navigatiorEl. | investigate the emergent obstacle avoidance properties of a visual homing
method using snapshots called the Average Landmark Vector (ALV) model [I]. The
underlying principle of snapshot visual homing is the following: Omni-directional
one-dimensional snapshots along the horizon are taken at two different positions. Those
are usually the home position and the current position of the agent. The snapshots are
aligned toward a common global orientation. The visual homing model allows to infer
the vector of displacement for the two positions of the snapshots. Note that this homing
strategy is local and therefore a large subset of the landmarks has to be visible from
both snapshot positions.

The ALV model can explain certain aspects of the navigation behaviour observed
in insects. It calculates the homing vector h by subtracting the AL vector at the target
position from the AL vector at the current position:

h:ac*ah

! This experiment has been described first in the context of emergence together with the example
of a holonomic robot in [4].
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where a;, = Y@ It and a. = >, I¢ are the sums of the landmark vectors at
the target and the current position respectively. The landmark vectors ¢ and I¢ have
unit length since distance information is not used. For simplicity, the AL vectors are
expressed as the sum (not the average) of the landmark vectors. The ALV model reduces
the image to a one-dimensional binary array, where each landmark is represented by
one pixel at the position pointing toward the centre of the landmark (or alternatively
two pixels pointing toward the left and right edge of the landmark). The ALV model
has been successfully implemented on a mobile robot built completely in analogue
hardware [5] using two capacitors in order to store the AL vector at the home position.
In a natural environment, it is difficult to separate the landmarks from the background.
An alternative version of the ALV model with continuous image processing has been
introduced [€]. It works on normalised, low-pass-filtered greyscale images, where a
vector pointing towards the centre of mass is used rather than an AL vector.

Fig. 2. Left: Schematics of an agent within a virtual environment at two different positions. The
omni-directional one-dimensional visual field of the agent is represented by a ring, containing the
projections of the landmarks. These rings do not represent the size of the agent. Right: Trajectories
from different starting positions on a grid toward a goal position at the centre where a snapshot had
been taken. The homing strategy used here is the average landmark vector (ALV) model, using
the edges of the cylinders as landmarks.

In Figure 2] left, the schematics of an agent within a virtual environment with
sparsely distributed cylindrical obstacles at two different positions are displayed. The
omni-directional one-dimensional visual field of the agent is represented by a ring,
containing the projections of the landmarks. The robot trajectories during visual homing
using the ALV model from different starting positions on a grid toward the goal position
can be seen in Figure Plright. The home snapshot has been taken at a position near the
centre of the virtual world. The homing algorithm takes a new snapshot at the current
position at each time step, calculates the homing vector, and moves a small step in this
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direction. As can be seen in Figure 2l right, the homing trajectories move around the
obstacles. This behaviour is not explicitly encoded in the ALV model.

It has been shown by Hafner[6] and Hafner and Mdller[7] that using the two
snapshots as inputs and the homing vector as desired target to a feed-forward neural
network, the ALV model can be learned in a self-supervised manner. An interesting
aspect shows up if we consider the learned visual homing model, which resembles the
original ALV model very closely. The neural network is trained with a set S of snapshot
pairs (s;, s;)* and vectors v, which directly point from position i¥ to position ;%
regardless of whether there are any obstacles in between the two snapshot positions or
not. The resulting learned model, however, will most often avoid these obstacles. The
reason for this strange behaviour can be explained by some geometric properties of the
environment.

xH
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//

N

Lo,
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} repulsive vector

Fig. 3. Schematics of an agent homing in a complex environment with several landmarks which can
at the same time be obstacles. The nearest obstacle is occluding other objects therefore producing
a repulsive vector away from the obstacle. H indicates the home position.

In Figure[3] a scenario for an agent homing in an environment with several landmarks
is plotted from a bird’s eye view. The agent is moving straight towards the goal, however,
the direct way is blocked by an obstacle. As soon as this obstacle is occluding another
landmark, the landmark vector [ which was formerly pointing from the current position
of the agent in direction of the occluded landmark L;, is now subtracted from the home
vector without occlusions. For L,,, ... , L,, being the occluded landmarks at the current
position with m < n, we get a new homing vector »’ from the difference of the two
average landmark vectors a, and a;:
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On average, the sum of the vectors pointing from the agent toward the occluded land-
marks is pointing straight in the centre of the occluding landmark. As a consequence, the
agent is repulsed from the landmark in front of it, allowing for any sidewards movement
to take over, resulting in trajectories as can be found in Figure 2 right. This repulsion
provides the same results as described in [8], where a force field method results in steer-
ing away from a surface. The problem of a dead spot, where the agent is repulsed exactly
in the direction negative to its movement vector is avoided by noise in real robots. The
agent is also automatically more strongly repulsed from close obstacles than from others
further away, since the close ones are occluding a higher number of other landmarks.

3 Discussion

| have shown a situation, where a navigation strategy, which is usually considered
to be on a higher level of complexity than basic obstacle avoidance behaviour,
results in exactly this behaviour without having it explicitly encoded. We call this
behaviour emergent, since it results from the agent-environment interaction, is not
pre-programmed, and cannot be separated into a sub-module independent from the
homing behaviour. This emergence of a simple behaviour (obstacle avoidance) from
a more complex behaviour (visual homing) is unusual. In nature, evolution clearly
does not come up with more complex behaviour before the most basic skills crucial
for survival have been developed. In robotics, obstacle avoidance is usually one of the
first behaviours to be implemented on a mobile robot in order to avoid damage to the
property, the robot and others.

The effect of emergent obstacle avoidance during visual homing can be observed
both in the real world using a mobile robot and in simulation, as long as the dynamics of
vision and egomotion are simulated correctly. In both simulation and the real world, the
dynamical interaction between agent and environment are important. A homing vector
that is derived at only one position either points to a position away from the goal, or
points directly towards the goal without taking any obstacles in between into account.
Only through the dynamics arising from a constantly updated visual input caused
by the movements of the agent within its environment can trajectories be produced
which avoid obstacles and lead to the goal. The robot does not influence its environ-
ment substantially, but it influences its own sensory input through its movements in space.

What makes this example particularly interesting for embodied Al is its focus on
the interaction with the environment. A navigating agent with sensors, motors and a
brair has to be embodied. It also shows that this concept cannot be restricted to mobile
robots, but should also apply to simulated agents: If we call an agent that exploits the

2 Note that having a brain is not necessarily a requirement for EAI, but for navigation. Animals
evolved brains because they had to move.
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interaction with its environment embodied, both mobile robots and simulated agents
that fulfil this requirement should be called embodied.

The importance of real world interaction for the study of intelligence and intelligent
behaviour in humans and other animals has been recognised a long time ago. This
interpretation applied to the study or the design of artificial agents has recently been
termed embodied Al. The aspects of the real world environment can vary. If we restrict
EAI to aspects of the environment as we (humans) perceive them, we exclude many
of the non-humanoid artificial agents. If we do not restrict it at all, then the concept of
EAl becomes extremely vague, including even abstract algorithmic software such as a
sorting algorithm which interacts with the memory stack. One problem with the EAI
approach lies in the vagueness of the central concept of embodiment. This vagueness
has hindered precise communication between researchers in the field so far.

As is clear from the example in section 2] there is no such thing as a dis-embodied
navigating agent, and going one step further, there is no dis-embodied agent at all. Every
agent, even a pure software agent, is defined by its interactions with the environment.
One has to be careful not to restrict the definition of environment in this context too
much. In conclusion, any interaction between an agent and an environment in their most
open definition can be interesting for the study of intelligence.
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Abstract. Cognition and Reasoning with uncertain and partial knowl-
edge is a challenge for autonomous mobile robotics. Previous robotics
systems based on a purely logical or geometrical paradigm are limited in
their ability to deal with partial or uncertain knowledge, adaptation to
new environments and noisy sensors. Representing knowledge as a joint
probability distribution increases the possibility for robotics systems to
increase their quality of perception on their environment and helps them
to take the right actions towards a more realistic and robust behavior.
Dealing with uncertainty is thus a major challenge for robotics in a real
and unconstrained environment. Here, we propose a new formalism and
methodology called Bayesian Programming which aims at the design
of efficient robotics systems evolving in a real and uncontrolled environ-
ment. The formalism will be exemplified and validated by two interesting
experiments.

1 Incompleteness and Uncertainty in Robotics

One of the biggest challenge for autonomous mobile robotics is the navigation
in unknown or partially known environments, when noisy sensors are used and
where unexpected events happen. Even if recent research resulted in some very
nice demonstrations of autonomous navigation in dynamic environments, we are
still far from having concepts and algorithms that adapt to different environ-
ments and scale well with the complexity of the environment.

This paper suggests a generic approach based on the well-known Bayes the-
ory, in order to progress toward cognitive systems that are able to reason in
highly complex real-world environments. The proposed Bayesian framework is
a generic approach for probabilistic reasoning. It combines probability distri-
butions, established through a priori knowledge and learning, with Bayesian
inference in order to make autonomous system capable of dealing with the un-
certainty and incompleteness of the real world. A priori knowledge and models
reduce significantly the complexity of the implementation. Thus, the probabilis-
tic reasoning becomes more feasible for highly dynamic and complex environ-
ments.

F. Iida et al. (Eds.): Embodied Artificial Intelligence, LNAI 3139, pp. 186 2004.
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In classical robotics [I], the programmer of the robot has himself an abstract
conception of the environment, described in geometrical, analytical and/or sym-
bolic terms because the shape of objects, the map of the world, the laws of
physics and the objects are known. Programming such a robot is a difficult
task because the programmer needs to completely know the environment. The
main example of this kind of robotics are the robots used to manufacture cars.
Their environment is highly constrained and their behavior is usually described
through a finite-state automaton. This is the usual answer to the problem of
uncertainty: let the environment be as predictable as possible by controlling and
constraining it. If the environment is open and if it cannot be constrained, or if
the programmer aims at a more versatile robot, then the complexity of the pro-
gram increases dramatically and lead to intractable models and representation
of the real world. Therefore, it is necessary just to take into account a small part
of the environment leading to a large number of hidden or unknown variables.

From an engineering point of view, an accurate control of both the environ-
ment and the tasks ensures that industrial robots work properly. However, this
approach is no longer possible when the robot must act in an environment not
specifically designed for it. The purpose of this chapter is to give an overview
of a generic solution to this problem especially to present a versatile framework
called Bayesian Programming (BP). Section 2 presents the Bayesian Program-
ming paradigm. It establishes a common formalism and methodology that will
be used throughout this chapter. The last section will be devoted to two complex
examples in robotics. A solution based on Bayesian Programming will also be
presented.

2 The Bayesian Programming Framework: A Generic
Formalism

This section introduces the Bayesian Programming formalism. As mentioned in
the introduction, when programming a robot, the programmer constructs an
abstract representation of its environment, which is basically described in geo-
metrical, analytical or symbolic terms. In a way, the programmer imposes to the
robot, his or her own abstract conception of the environment. The difficulties
appear when the robot needs to link these abstract concepts with the robot’s raw
signals (either obtained from the robot’s sensors or being sent to the robot’s actu-
ators). The central origin of these difficulties is the irreducible incompleteness of
the models. Probabilistic methodologies and techniques offer possible solutions
to the incompleteness and uncertainty difficulties when programming a robot.
The basic programming resources are probability distributions. The Bayesian
Programming (BP) approach was originally proposed as a tool for robotic pro-
gramming (see [2]), but nowadays used in a wider scope of applications: CAD
systems [3], path planning [4] or medical diagnosis [5].

The Bayesian Programming formalism allows using a unique notation and
structure to describe probabilistic knowledge and its use. The elements of a
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Bayesian Program are illustrated in Figure [l A BP is divided in two parts: a
description and a question.

Variables
Decomposition
Spec (S) Parametric OR
Forms ¢ Programs or
Question to other programs
Identification based on Data (9)

Program (P) Description (D)

Question (Q)

Fig. 1. Structure of a Bayesian program.

2.1 Description

The first component is a declarative component, where the user defines a de-
scription: it is a way to specify a joint distribution over a set of variables
{X; X5 ... X,}, given a set of experimental data § and preliminary knowl-
edge 7. The variables have to be relevant for the environment one would like
to model. The joint distribution P(X; X5 ... X,, | § m) is decomposed into a
product of simpler terms based on some conditional independence assumptions.
This set of assumptions belongs to the set m of a priori knowledge. In order to
complete the description, parametric forms (also belonging to 7) and a priori
distributions (numerical parameters of the so-called parametric forms) are given.
If there are free parameters in the parametric forms, they have to be manually
defined or fitted using a learning procedure on the set of experimental data ¢.

The aim of a decomposition is to introduce some conditional independence
assumptions between variables so that to decrease the complexity of the inference
process or more generally to introduce a priori knowledge about the environment
or the behavior of the robot. This kind of knowledge is provided by the program-
mer and represents either causal interactions [6] or structural relations between
variables. For example, a first-order Markov assumption claims that the belief
state of a variable X; at time ¢ is independent of its long-term past, given its
short-term past. In other words X; is independent of X; ;,Vi > 1 given X;_;.
Therefore the decomposition for such a simple system is P(X¢|X:—1).P(X¢—1).

Variables represent facts about the environment or the robot. For example,
a light sensor could be represented by a variable L where its probability distri-
bution is assumed to be Gaussian, L ~ AN (i, 0?), and represent the intensity of
light occurring at the sensor.

2.2 Question

Now, let assume that an environment can be described with the following set
of variables § = {A, B,C, D}. Our a priori (or prior) knowledge can be sum-
marized by the statement "C is independent of D given A and B”. No other
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particular knowledge about A and B is available. Therefore, an obvious decom-
position would be P(ABCD) = P(C|AB)P(D|AB)P(AB). This decomposition
is not easy to use since the joint probability distribution over {AB} has to be
computed. The probability P(AB) can be approximated using sampling tech-
niques or can be decomposed into a simpler joint probability distribution using
the so-called chain’s rule: P(AB) = P(A|B)P(B) = P(B|A)P(A). More for-
mally, a question is obtained by partionning the initial set of variables into three
distinct subsets: Known, Searched and Unknown. The first set denotes the set
of observed variables. The second is the subset for which one wants to know the
posterior joint probability distribution. And finally, the third subset contains
unobserved or latent variables.

Using knowledge is answering the question. Answering the question is solving
a Bayesian inference problem on the description in order to compute the posterior
probability distribution described by the question. Therefore, a question in a
Bayesian Program is the posterior probability distribution one is interested, given
some measurements on the other variables. For example, let assume that we
know some facts about B, but nothing about the other variables, say B = b;.
We would like what is the posterior distribution of D given B = b;. The question
is P(D|B = by). Here we assume we have an algorithm to solve this Bayesian
inference problem is available, and so by giving the description, = and §, the
probability distribution of P(D|B = b;) can be computed.

The general question P(S\g|B = b;) is also known as the belief propagation
problem [7]. This chapter is mainly concerned with modeling issues, and we as-
sume the inference problem to be solved and implemented in an efficient way
by an inference engine. The reader should be warned that Bayesian inference is
not an obvious problem and inference algorithms are usually designed together
with the model itself in order to obtain optimal results in terms of computa-
tional costs and accuracy. However, general algorithms are also available, based
on messages and beliefs propagation [8], sampling techniques or variational ap-
proximations [9].

3 Complex Bayesian Programming for Robotics

This section presents two applications of Bayesian Programming. The first one
is an extension of occupancy grids using a priori knowledge to perform target
position and velocity in an urban traffic situation. The grids are combined with
danger estimation to perform an elementary task of obstacle avoidance with an
electric car. The second application is devoted to topological global localiza-
tion by using sequences of features forming a global distinctive fingerprint. The
topological representation gives a compact representation since only distinctive
places within the environment are encoded.
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3.1 Bayesian Programming for Multi-target Tracking:
An Automotive Application

The ADAS Context. Unlike regular cruise control systems, Adaptive Cruise
Control (ACC) systems use a range sensor to regulate the speed of the car while
ensuring collision avoidance with the vehicle in front. ACC systems were intro-
duced on the automotive market in 1999. Since then, surveys and experimental
assessments have demonstrated the interest for this kind of systems. They are
the first step towards the design of future Advanced Driver Assistance Systems
(ADAS) that should help the driver in increasingly complex driving tasks. The
use of today commercially available ACC systems is pretty much limited to
motorways or urban expressways without crossings. The traffic situations en-
countered are rather simple and attention can be focused on a few, well defined
detected objects (cars and trucks). Nonetheless, even in these relatively simple
situations, these systems show a number of limitations: they are not very good
at handling fixed obstacles and may generate false alarms; moreover, in some
‘cut-in’ situations, i.e. when the intrusion of an other vehicle or a pedestrian
in the detection beam is too close to the vehicle, they may be unable to react
appropriately.

A wider use of such systems requires to extend their range of operation to
some more complex situations in dense traffic environments, around or inside
urban areas. In such areas, traffic is characterized by lower speeds, tight curves,
traffic signs, crossings and “fragile” traffic participants such as motorbikes, bi-
cycles or pedestrians.

The Related Multi-Target Tracking Problem. A prerequisite to a reliable
ADAS in such complex traffic situations is an estimation of dynamic character-
istics of the traffic participants, such as position and velocity. This problem is
basically a Multi-target Tracking problem. The objective is to collect observa-
tions, i.e. data from the sensor, on one or more potential obstacles in the envi-
ronment of the vehicle, and then to estimate at each time step and as robustly
as possible the obstacles position and velocity. Classical approach is to track the
different objects independently, by maintaining a list of tracks, i.e. a list of cur-
rently known objects. The main difficulty of multi-target tracking is known as
the Data Association problem. It includes observation-to-track association and
track management problems. The goal of observation-to-track association is to
decide whether a new sensor observation corresponds to an existing track or not.
Then the goal of track maintenance is to decide the confirmation or the deletion
of each existing track, and, if required, the creation of new tracks. A complete
review of the tracking methods with one or more sensors can be found in [10].

Urban traffic scenarios are still a challenge in multi-target tracking area: the
traditional data association problem is intractable in situations involving nu-
merous appearances, disappearances and occlusions of a large number of rapidly
maneuvering targets.

The approach presented here is a new approach for a robust perception and
analysis of highly dynamic environments. This approach has been designed in
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order to avoid the data association problem previously mentioned. It is based on
a probabilistic grid representation of the obstacles state space. As we consider
the position and the velocity of the potential obstacles with respect to our ve-
hicle, this grid is 4-dimensional. Then for each cell of the grid, the occupancy
probability is estimated using sensor observations and some prior knowledge.

Estimation of the Occupancy Grid. The objective is to compute from the
sensor observations the probability that each cell is full or empty. To avoid a
combinatorial explosion of grid configuration, the cell states are estimated as
independent random variables.

The occupancy grid framework was extensively used for mapping and local-
ization. Of course, for an automotive application, it is impossible and useless
to model the whole environment of the vehicle with a grid. Thus we will model
only the near-front environment of our vehicle. As we want to estimate the rel-
ative position and the relative velocity of objects, each cell of our 4-01 grid
corresponds to a position and a speed relative to the vehicle.

Figure Pl presents the Bayesian Program for the estimation of the occupancy
probability of a cell. To simplify notations, a particular cell of the grid is denoted
by a single variable X, despite the grid is 4-D. The number of sensor observations
at time k is named N*. One sensor data at time k is denoted by the variable
ZF, i =1...Ng. The set of all sensor observations at time  is noted Z*. The set
of all sensor observations until time k is referred by the notation Z.;. A variable
called the matching variable and noted M* is added. Its goal is to specify which
observation of the sensor is currently used to estimate the state of the cell.

Bayesian Occupancy Filter. To take into account the dynamic environment,
and to be as robust as possible relatively to objects occlusions, it is necessary to
take into account the sensor observations history and the temporal consistency of
the scene. This is done by introducing a two-step mechanism in the occupancy
grid estimation. This mechanism includes a prediction (history) and an esti-
mation (new measurements) steps. This mechanism is derived from the Bayes
filtersq approach [I1] and it is called the Bayesian Occupancy Filter (BOF).
Figure Bl shows the corresponding Bayesian Program.

Experimental Results. To test the estimation of occupancy grids both a
simulator and the real Cycab vehicle were used. Figure Blshows the first results
of estimation and prediction steps, for a static scene. The upper left scheme
depicts the situation: two static objects are present in front of the Cycab. These
two objects are fixed. The Cycab is static too. Thus only 2-dimensional grids
are depicted, corresponding to the object’s position at a null speed. Figure db
represents the occupancy grid, knowing only the first sensor observations. The
gray level corresponds to the probability that a cell is occupied. In this case,
the two objects are detected by the sensor. Consequently, two areas with high

1 9 dimensions for the z,y position and 2 dimensions for the &, velocities
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Variables
X* :cell X at time k& E% : 3 an object in cell X
Z* . sensor observations M* : “matching” variable.
Decomposition
P(X" B 2" =
(Xk)P(Zlkfl)P(Eéc( ‘ szl:kfl
D N
P(M*) T] P(z{|M" BX X*)
P s=1
Parametric Forms
P(X*): Uniform P(2Y~1): Unknown
P(E% | X* 2%~1): Prediction step P(M*): Uniform
P(ZF | [IM* = s] BE% X*): Sensor model
P(ZF | M* # s E% X*): Uniform
Question :
Fig. 2. Estimation Step at time k.
Variables
X* EY XkEL Ef{l, ZYF=1 . same semantic as previously
Ukt : control of the Cycab at time k—1
Decomposition
P(Xk; E§( Xk—l E;c(—l Zl:k—l Uk—l) _
P(Zl:kil)P(kal)P(Xk—l) P(E§_1 | kal Zl:kfl)
D P(Xk | kal kal) P(E;c( | E;—l Xk kal)
P Parametric Forms
P(2hFh : Unknown
PU : Uniform
P(X* 1 : Uniform
P(X* | X* 1 : dyn. model
P(E% | EE' X* X*=1) : Dirac.
P(EXH | XF-L 2101y estim. at k—1
Question :
P(Eé( | Xk Zl:k—l Uk:—l)

Fig. 3. Prediction Step at time k.

occupancy probabilities are visible (dark gray areas). These probability values
depend on the probability of detection, the probability of false alarm, and on the
sensor precision. All these characteristics of the sensor are taken into account in
the sensor model.
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c) P([EX =1]|2") d) P(EX =1]]2'2%)

Fig. 4. First example of grid estimation, for a static scene.

The cells hidden by a sensor observation have not been observed. Thus we
can not conclude about their occupancy. That explains the two areas of proba-
bility values close to 0.5. Thanks to this property of occupancy grids and to the
prediction phase, the estimation of the grid is robust to temporary occlusion be-
tween moving objects. Finally, for cells located far from any sensor observation,
the occupancy probability is low (plain grey areas).

To validate the approach in dynamic situations, an application involving
an electric car has been implemented [12]. The car is longitudinally controlled
in order to avoid obstacles. This basic behavior is obtained by combining the
occupancy probability and the danger probability of each cell of the grid. Results
of the experiments clearly show that this approach is able to prevent collisions
even when moving obstacles (pedestrians for example) are temporally hidden
(by a parked car for example).

3.2 Bayesian Programming for Topological Navigation with the
Fingerprint Concept

Introduction. The topological approach yields a compact representation and
allows high-level symbolic reasoning for map building and navigation. With this
method we try to eliminate the perceptual aliasing (i.e. distinct locations within
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the environment appearing identical to the robot’s sensors) and to improve the
distinctiveness of the places in the environment. To maximize the reliability
in navigation, the information from all the sensors that are available to the
robot must be used. The notion of fingerprint is used [I3/14] to characterize
the environment. This is especially interesting when used within a topological
localization and multiple modality framework.

——— | 110
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Fig.5. Fingerprint generation. (a) panoramic image with the vertical edges v’ and
color patches detection, (b) laser scan with extracted corners 'c¢’ and beacons ’b’, (c)
the first four images depict the position (0° to 359°) of the vertical edges, the corners,
the beacons and the colors (G-green, E-light green, and A-red) respectively. The fifth
image describes the correspondence between the vertical edge features and the corner
features. By regrouping all this results together and by adding the empty space features,
the final fingerprint is: cbecbnfGenEnveencbevnennfvvunceAch.

A fingerprint is a circular list of features, where the ordering matches the
relative ordering of the features around the robot. We denote the fingerprint
sequence using a list of characters, where each character represents the instance
of a specific feature type. In our case we choose to extract color patches and
vertical edges from visual information and corners and beacons from laser scan-
ner. The letter 'v’ is used to characterize an edge, the letters A, B, C, ..., P to
represent hue bins, the letter 'c’ to characterize a corner feature and the letter 'b’
to characterize a beacon feature. Details about the visual features extraction can
be found in [I4l15] and laser scanner features extraction can be found in [16].

Fingerprint Generation. The fingerprint generation is done in three steps (see
Figure [H). The extraction of the different features (e.g. vertical edges, corners,
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color patches, beacons) from the sensors is the first phase of the fingerprint gen-
eration. The order of the features, given by their angular positions (0°...359°)
is kept in an array. At this stage a new type of virtual feature ’f’ is introduced,
that reflects the correspondence between a corner and an edge. The ordering of
the features in a fingerprint sequence is highly informative and for that reason
the notion of angular distance between two consecutive features is added. This
geometric information increases, once again, the distinctiveness between the fin-
gerprints. Therefore, we introduced an additional type of feature, the empty
space feature 'n’, to reflect angular distance. Each 'n’ covers the same angle of
the scene (20 degrees). This insertion is the last step of the fingerprint genera-
tion [14].

Fingerprint Matching for Localization. The string-matching problem is not
easy. Usually strings do not match exactly because the robot may not be exactly
located on a map point and/or some changes in the environment or perception
errors occurred. The standard algorithms are quite sensitive to insertion and
deletion errors, which cause the string lengths to vary significantly. The approach
adopted previously in the fingerprint approach for sequence matching is inspired
by the minimum energy algorithm used in stereo-vision for finding pixels in two
images that correspond to the same point of a scene [L7]. More details can be
found in [13]14]. Our current approach is a combination of the global alignment
algorithm and the Bayesian formalism and it is described below.

Probabilistic fingerprint matching algorithm. The new approach comprises two
steps. The first step is the phase of supervised learning where the robot inspects
several locations, denoted by Loc. From each location loc € Loc the robot ex-
tracts the fingerprint data, as explained earlier, and stores it along with the
name of the location in a database, denoted by the symbol .

The second step is the phase of application, where we want the robot to
localize itself in the environment. To answer at the question ” Where am 177, the
robot will extract the fingerprint fp of its current surroundings and solve the
basic formula of probabilistic localization:

loc* = argmax;,.cr,,.P(loc | fp ).

This means that if fingerprints are associated to each location, then the actual
location of the robot may be recovered by comparing the fingerprint fp with the
data of known locations and choosing the location loc* which has the highest
probability. In what follows we show how P(loc | fp ) can be solved by applying
Bayesian Programming.

Figure[f] shows the Bayesian Program used for the fingerprint matching. The
features are denoted by: Ve the set of vertical edges and Cp the set of color
patches extracted by the omni-directional camera; Fx the set of line extremities
and B the set of beacons extracted from the data given by the laser scanner. For
the fingerprint of a location, which is encoded as a circular string the notation
Fp is used, and for the set of known (learned) locations the notation Loc is



196 D. Bellot et al.

Variables
Ve: vertical edges C'p: color patches
FEx: extremities B: beacons

Fp : a fingerprint of a location Loc: the set of locations

Decomposition
P(Loc Ve Cp Ex B Fp | ) =
(P(Loc | 7) P(Ve | Loc ) P(Cp | Loc ) )

D P(Ex | Loc ) P(B | Loc ) P(Fp | Loc )
P
Parametric Forms
P(Loc | 7): Unif.
P(f | loc m): |f\|/]_[fi€f pMog(gﬂm)(fi),Vloc € Loc
where fe(Ve,Cp, Ex, B)
P(Fp | loc 7'('): GlobalAlignme{rLt(Fp,fploc)+l
where fpioc is the fingerprint of the location loc
Question :

P(Loc | Ve Cp Ex B Fp )

Fig. 6. The fingerprint matching formalism written in BP

employed. Although the fingerprint string F'p, constructed over all the features
(see [19]), adds some redundancy to the system, it introduces at the same time
valuable information about the relative order of the features, which will improve
the results. We assume that the variables Ve, Cp, Ez, B and Fp are independent
from one another. We consider that the features (Ve, Cp, Ex, B) are dependent
of the location and these dependencies lead to the decomposition described in
the Bayesian Program (see Figure [6). From the result of the decomposition
formula (see Figure [G) we can distinguish three different kinds of probability
distributions:

— Since we have no a priori information about locations, we consider each
location to be equally probable and consequently we express the probability
of a location given all the prior knowledge as a uniform distribution.

— To determine the probability of one feature f, where f € {Ve, Cp, Ex,
B}, given the location and all the a priori knowledge, we suggest to ex-
press this probability as the likelihood of the new feature data f with re-
spect to the distribution of the same feature as encountered at the given
location during the learning phase. We calculate the distribution as a mix-
ture of Gaussians (MOG) in angle space, optimizing the mixture parameters
010 :{Wfloc,/,l/floc ,ofzoc}(where Wyioc is the weight, fizioc is the mean and
0 fioc is the standard deviation of the f;-th mixture component), by making
use of the Expectation Maximization (EM) algorithm [I8]. Let us illustrate
the P(f = Ve | loc w) with an example. We start with a set of 13 occur-
rences of vertical edges and we calculate the MOG for it. We then generate
a second set, this time with 18 occurrences, and evaluate the probability
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P(f = Ve | loc ) for both data sets with the same MOG parameters (see
Figure [Th and Figure [Mb). As expected, the resulting value is for the first
data set significantly higher than for the second, since the parameters of the
MOG were chosen to maximize the first set. Note how flexible this method
is with respect to the number of features per set: A MOG can be gener-
ated from a set of any number of features, and it can be evaluated later for
samples of arbitrary length.

— To calculate the probability of the fingerprint sequence given the location and
all the prior knowledge: we will use the global alignment algorithm [T9] used
usually for the alignment of DNA sequences. Let GlobalAlignment(Fp, fpioc)
be a function yielding the minimal cost of the global alignment algorithm of
two fingerprint strings.

Obviously, the three equations from the parametric forms will solve the basic
question described in the Bayesian Program.

anguiar leature anguisr festure.
LB 04
038 035
a3 03
a [

0z o \
015 015
a1 (%]
005 008
o 3 2 1 [ 1 2 3 3 2 . ] 1 3
postion [rad] persition jrad]
a) b)

Fig. 7. (a)Evaluation of P(f = Ve | loc ) for the original data set. (b)Evaluation of
P(f = Ve | loc 7) for other data set, resulting in a smaller value, since the MOG is
not optimal for this data.

Experimental Results. The approach has been tested in ten rooms, in a
50 x 25 m? portion of our institute building. For the experiments, Donald Duck
(see Figure [§)), a fully autonomous mobile robot, has been used.

In order to validate the probabilistic fingerprint approach, for each of the ten
rooms, fingerprints have been extracted. This experiment has been repeated ten
times for each room. Eight times it was placed on a circle 40 cm to 70 cm of
radius, yielding the training data, and two times inside the same circle, yielding
the test data. For a given observation (fingerprint), a match is successful if the
best match with the database (highest probability) corresponds to the correct
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Fig. 8. System used for the experimentation: The fully autonomous robot Donald
Duck and the panoramic vision system. The camera has a 640 x 480 pixel resolution
and an equiangular mirror is used so that each pixel in the image covers the same view
angle.

room. Since the number of occurrences of the beacon and color patch feature was
too small to give significant results, they were omitted for the MOG calculations,
but they were used for the fingerprint strings. The results yield a percentage of
successful matches of 82.4%. The method presented does not always lead to a
perfect success rate, but it still delivers valuable information for false-matched
rooms. When the room is successfully matched, the probabilistic matching algo-
rithm gives a high probability: 0.79 in average (between 0.62 and 0.89). Even if it
detects the correct room with the second or third highest probability, a Bayesian
localization approach, like for example a Partially Observable Markov Decision
Process (POMDP) [20l2I] can use this information in its observation function.
An amelioration of the results can be expected with the augmentation of the
number of components of Mixture of Gaussians (MOG) and of the number of
observations of a feature [22].

4 Conclusion and Open Problems on Bayesian
Programming

The main interest of Bayesian Programming is its ability to describe real-world
models with partial and incomplete knowledge about the world. Bayesian Pro-
gramming is a promising framework and a lot of exciting open problems still
exists. To progress toward more robust and sophisticated robotics control sys-
tems, these problems need innovative and original solutions. Apart from robotics,
those problems are common to other artificial intelligence related fields. It was
shown before that it is impossible to completely represent an environment and
the strength of Bayesian Programming is to deal with this incompleteness by
transforming it into uncertainty. However, the more knowledge is used, the more
accurate is the behavior of the robot. Therefore, the problem of making realistic
and robust behaviors can be summarized as follow:
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how to make a well-adapted Bayesian Program?

— how to know that a program fit perfectly into a particular task?

how to learn unknown parameters from real data and experiences?

— how to efficiently use a complex program with many variables and many
probabilistic forms?

The answer to those questions is not obvious and leads to more general and
exciting questions : learning and inference. How to learn a Bayesian Program
instead of making it by hand and how to use the data provided by sensors in order
to extract and learn a program? It is out of the scope of this paper to present
details about state-of-the-art research on algorithm for Bayesian Programming,
but we give here a few facts on this:

— inference is a NP-hard problem for a general Bayesian Program, but solutions
exists for particular problems. For example, a state-space model Bayesian fil-
ter is usually dealt with using Kalman filter [23]124] or the Forward-Backward
algorithm [25]. If the time series analysed by the filter is stationary gaussian,
then Durbin-Levison approaches are technically efficient [26],

— inference on regular lattices of variables can be solved using suited algo-
rithms. For instance, factorial hidden Markov models represent a complex
stochastic process decomposed into several independent Markov chains given
observations. The inference problem is intractable but the use of a vari-
ational approximation helps to overcome the computational cost of exact
inference [27],

— probabilistic forms are usually discrete or gaussian. However, Bayesian Pro-
gramming aims at representing whatever probability distributions where
probabilistic forms are numerous or even unknown. Numerous approaches
exists for dealing with other probabilistic forms, like Mixtures of Gaussians
or exponential forms [28],

— complexity of probabilistic forms is sometime a bottleneck for robotics ap-
plications. Some techniques aims at reducing the memory footprint of those
forms by approximating the distribution leading to a more efficient internal
representation [29],

— making versatile programs is hard, but making small programs is quite easier.
Does it exist a similar way as object software engineering to link and join
small Bayesian Programs into a larger one. Several approaches have been
developed: relational probabilistic models [30] or active learning [31] in the
context of expert systems.

These techniques and approaches have been designed for particular purposes
in the field of statistical learning and artificial intelligence and solve specific
problems. They can be adapted to robotics and lead will to more efficient robots
systems being able to deal with more complex environments as those of the real
world.
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Abstract. We propose to investigate the foundations of communication
and symbolic behavior by means or a robotics approach, i.e. by studying
how these behaviors might emerge from the physical dynamics of an
agent and its sensory-motor interactions with the real world. In this
perspective, the human-robot interface problem can be viewed as one
of coupling the interaction dynamics of all agents. Through a number
of case studies we will show that within this interaction dynamics there
is sparse global structure, i.e. a structure that can be characterized by
only a small number of points in phase space, and that it is best to
interact with the agent, i.e. interfere with its dynamics, at these points.
We introduce a humanoid robot with the capability for dynamic full-
body movement. The preliminary results of two experiments, sitting and
standing up, are presented. Lastly, experiments with self exploratory
learning of embodiment and visual motor learning of neonatal imitation
abilities are introduced.

1 Introduction

Over the past decades there have been substantial research efforts devoted to de-
veloping human-robot interfaces. Recently, partly boosted by a drastic increase
in computational power, there has been a lot of progress in achieving skilled be-
havior, e.g. in visual tracking, face recognition, gesture recognition/production,
action understanding, speech recognition/synthesis, compliant motion, and real-
time hand-eye coordination.

However, the following principle-level issues seem to remain largely unex-
plored; What are the essential factors for assuring the meaningfulness of the
executed tasks? Task execution in the real world is always under unpredictable
perturbations. And the details of the execution should change in order to adapt
to various situations. Therefore appropriate control is crucial to assure that the
important conditions are not missed while being adaptive. So far finding and
defining such conditions and control laws are done by humans in a problem
specific mannar.

A symmetrical problem can be seen in recognition tasks. A well known
“pattern-to-symbol” problem has exactly the same structure in that the system

F. lida et al. (Eds.): Embodied Artificial Intelligence, LNAI 3139, pp. 202-2I8] 2004.
(© Springer-Verlag Berlin Heidelberg 2004
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is required to extract essential meaningful information from continous patterns
with changing details due to real world situations even though they maintain the
same meaning. So far pattern-to-symbol conversion rules are explicitly defined
by humans in a problem-specific mannar.

These problems are naturally extended to human-machine interface issues.
There, the “important conditions” above are not statically given, but dynam-
ically commanded by humans. And machines should perceive human behavior
with changing details and extract essential meaningful information. So far the
interface protocols are defined by humans in a context-specific mannar. But real
human behavior cannot be treated as static patterns.

In many cases the existing methodologies above are very fragile and that is
why most of the robotic demos only work in laboratories. But we do not have
general rules which tell us what the appropriate control laws, conversion rules,
interface protocols are, in uncertain situations. Neither do we have a method-
ology for automatic acquisition of them. Are there any general principles that
guide us finding solutions for these questions across many task domains and
situations?

Open-Ended And Emergent Information Structure. Humanoid robotics necessi-
tates an entirely different approach from traditional engineering. Because hu-
manoids should have what has been called a ”globally well-balanced functional-
ity” [, i.e. they should be able to perform a large set of tasks with very different
requirements such as walking, grasping and manipulating objects, recognizing
faces and, interacting with humans by means of natural language, optimal per-
formance can no longer be defined. The strategies employed must be open-ended
which means that they can continuously adapt to changing task demands and
changing environments.

There is a considerable body of literature on the so-called symbol ground-
ing problem. Rather than assuming that symbols are there as extant structures
and need to be grounded, we suggest to view symbols as being emergent from a
complex system-environment dynamics. The question to be tackled then is how,
within this continuous stream of physical processes (stream of sensory stimula-
tion from the visual, auditory, tactile, olfactory, and proprioceptive system, and
motor actions of body and limbs), discrete entities can be clearly identified. If
these entities are stable over certain variations in environmental conditions, they
can be taken to designate what we might want to call low-level ”symbols”.

We start from the assumption that whenever we are engaged in sensory-motor
interactions, some global information structure will emerge from the natural
dynamics of the body-environment syste.

By global information structure we mean that if we repeat the “same” task
many times in different situations, we can find clearly identifiable features com-
mon to all of these instances. Details of these instances are always different
as a result of adaptation to changing situations. But there are some persistent

L Tt is important to note that the structure does not exist before the interaction occurs.
It emerges only when the interaction is taking place.
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features by which we identify the category of each action and task. This is anal-
ogous to the mathematical concept of “structural stability”, which means that
the referred stucture is persistent even if the underlying manifold deviates from
its original form in almost every point.

This information structure is sparse in the sense that within the continu-
ous dynamics, it comprises only a certain finite and relatively small number of
discrete states. This information structure forms the basis for agent-agent in-
teraction, or to use the terminology introduced earlier, it forms the basis for
the coupling of the dynamics of two agents. This coupling can be achieved, for
example, by observation which in turn forms the basis of imitation learning.

Because of the discrete and persistent nature we can identify this global
information structure with the notion of ”symbols”. Note that when we talk
about information structure, we do not mean an extant memory structure of
sorts, but a structure that emerges during the interaction. In this sense, the
global information structure is the result of a self-organizing process.

Fig. 1. Three Term Interaction Structure

Meaningful Three-Term Interaction. Three-term structure (Fig. [[) sets the foun-
dation for the principle level discussion of the general interface problem. It con-
sists of a human, a machine, and the environment. The human and the machine
are individually involved in autonomous interaction (i.e. sensory-motor loops)
through the environment

The interface problem is formulated as interaction between the two interac-
tion dynamics, e.g. some information (or sometimes, force) is transmitted from
human-environment interaction and affect the machine-environment interaction.

Our interest is in how such inter-dynamics interaction (i.e. the interaction
between the human-environment and the machine-environment interactions) is
realized effectively, without destroying the current intra-dynamics (i.e. the be-
havior of each agent). In other words, how can autonomy and sociality be fused
together consistently?

The concept of three-term interaction structure will become clear as we go
through some examples.

Outline of the paper. We start by introducing the concept of a “three term inter-
action”. This is followed by the presentation of two case studies. The first one

2 An observer point of view may attribute certain “behaviors” to these interaction
dynamics.
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Fig. 2. Learning by Watching system (Left). A human performance of an arbitrary
block stacking task is observed by a trinocular (stereo + zoom) camera system. Action
units are identified in real time. The resulting symbolic action sequence is fed to a robot
manipulator system which re-generates the learned actions to achieve the same task
goal in a different workspace with a different initial block placements. Some snapshots
of monitor display during task recognition (Right). Picking up the fourth pillar (top
row) and placing the top plate (bottom row) in a ”table” building task. The real time
recognition results are displayed at the bottom; 1. reach, 2. pick, 3. pick, 4. place-on-
block.

is about “learning by watching” where a robot equipped with a vision system
observes a human performing a particular task. This case study deals with the
problem of how to generate discrete states - symbols - from a continuous flow
of visual stimulation. The second case study describes the full body dynamic
motion of a simulated humanoid. We will demonstrate that the behavior of this
robot is best influenced at certain critical points as defined by the sparse global
information structure. Then, we introduce our current research platform which
consists of a human-size humanoid robot with a large number of degrees of free-
dom, and we describe a real-time vision-based imitation experiment. Next, we
discuss two experiments on body-schema acquisition and boot-strap learning of
action categories based on self-exploration. Then we briefly introduce a system
that learns to imitate the movements of another agent. The learning behavior is
achieved by a neural mechanism capable of identifying attractor states in tem-
poral sequences of high-dimensional sensory-motor data. Self-exploration desig-
nates sensory-motor activity that is not triggered by a particular interaction with
other agents but is self-motivated. It is called “exploration” because, from an
observer’s perspective, this serves the purpose of “exploring” the sensory-motor
potential of the body.

2 Qualitative Action Recognition — Case Study I

Kuniyoshi et al. [2] built an experimental system which recognizes pick and place
sequences performed by a person in real time (Fig. ).
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A direct trajectory mapping from the human hand movement to the robot’s
movement will not result in performing the same task. This is because the initial
placements of the blocks are different in teaching phase and task execution phase,
The system must extract “symbolic” information from the continuos image data
of human performance. Here, “symbolic” means that it is a unit of information
which is reusable and invariant over different situations and sensory-motor in-
teractions. In this particular system, the symbolic information corresponds to
action units which are defined for observation of human actions and correspond-
ing robot actions. Later in this paper, we will discuss how such action unit
segmentations emerge from body-environment interaction dynamics. Ultimately
a robot should be able to create its own action concepts based on such emergent
structure and then use them to recognize other’s actions. But for the time being,
we investigate the perceptual process.

Kuniyoshi et al. [3] proposes the following principles of action recognition.

— Action recognition is detecting causal relationship connecting the subject of
action, its motion, the target object, and its motion.

— Temporal segmentation of actions is done when the causal relationship
changes.

— The causal relationship is affected by the ongoing context of overall task.

Mathematically, causality can be modelled as a consistent “dynamics”, i.e.
for a function F' which is stable over a period of time, ;11 = F(x:). The most
important point is that a boundary of action emerges as the boundary between
more than one F'. And this boundary articulates symbolic action units, and im-
portant perceptual information is mainly collected at this boundary, according to
past psychological experiments [4]. In other words, interfering multiple interac-
tion dynamics define boundary structures which are the foundation of symbols.
And the symbols are the units of information which maintains commonality over
different situations and agents.

3 Controlling at the Boundaries of Intra-dynamics —
Case Study 11

Let us discuss about the idea of global structure within intra-dynamics, using
an example of “rising” action [1J5]. Here we assume that a person is initially
lying flat on the floor, then the person is asked to stand up quickly. One typical
strategy would be to first swing up the legs, swing them down, and use the
inertia of the legs to bring up the torso in a ballistic movement.

Figure Bl shows some snapshots from the motion capture data of a human
subject. Hip and knee angles phase space trajectories are shown in Fig. [

What we([5]) found out was that the trajectory bundle from multiple trials
have non-uniform structure. The trajectories converge at certain critical parts
and diverges in other parts.

Based on further analysis and speculations, we proposed that the entire phase
space for a dynamic whole body task has non-uniform structures with sparse
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Fig. 3. Snapshots of motion capture data of a “Rising” action performed by a human
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Fig. 4. Phase space trajectories of multiple trials of a “Rising” action. Trajectories
converge at critical control points and diverges at ballistic movement parts.

critical points where the phase space trajectories converge or branch. This leads
us to a novel strategy for controlling complex whole body dynamic actions. In
the following, we describe one example of such a strategy.

Figure @l is an output from a general purpose dynamics simulator ADAMS.
The physical process of body motion including multiple contacts is faithfully
simulated. The joint angles of the robot is manually fed by a human programmer
in an open-loop manner (i.e. without feedback control). In some sense this is
similar to teleoperation because there the operator specifies the desired sequence
of positions of the robot.

Initially the robot is lying flat on the floor(a). Then the robot swings up
its legs(b), and swings them down, which makes it rolling forward (a ballistic
motion), passing a crouching position(c) (local maxima), until it hits the ground
with its hands (d) (potential barrier). There it pauses. Then slowly rolls back
by pushing against the ground by hands until it balances on its feet(e). Finally
it slowly stands up(f). And walks several steps (not shown in the figure).

Our control strategy was extremely simplistic. The programmer just chose
the “key poses” (corresponding to the snapshots in Fig. [f]) intuitively based on
his own motor imagery, i.e. based on what he imagined would be natural inter-
mediate positions. Then he arranged them at appropriate timings with straight-
forward temporal interpolations which connect them. The control was entirely
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Fig. 5. Schematic view of non-uniform global-dynamics structure. Gray bands denote
multiple phase space trajectory bundles connecting the initial state and the goal state.
Circles denote converging or branching points on the trajectory bundles.

open-loop. We just let the system go and let the natural dynamics take over.
And, lo and behold, it worked! Moreover, it was even robust against small per-
turbations in the postures and dimensional parameters of the body.

We can see the following important points from the above example.

1. While the system is captured in strong physical dynamics, e.g. the ballistic
motion part ((b)-(c) in Fig. B and point A in Fig.[7), it is hard to change
the trajectory of the system. By contrast, when the system is in a weaker
dynamics, i.e. at a non-stable equilibrium point such as a crouching pos-
ture, the controller can bring the system into any of the adjacent stronger
dynamics by a slight intervention, such as kicking or pushing lightly.

(a) (b) ()

(d) (e) ()

—_

Fig. 6. “Rising” action. Output from a full dynamics simulator. (Created by A. Na-
gakubo)
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Fig. 7. Types of intervention. Left: Intervention at boundary points. Right: Interven-
tion by actively changing the dynamical landscape.
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Fig. 8. Our Humanoid: The schematic figure, photo, joint configuration, and mass(kg)
distribution of the mechanism.

2. The reason why the naive pose mapping method succeeded, was because
the global dynamics structures were very similar between the programmer’s
body and the robot’s body (i.e. the dynamics of this task is mostly governed
by the outer shape, posture and mass distribution of the body), and that
the global structures were robust enough to tolerate small differences and
perturbations. In order to exploit this property, the intervention was made
only at the boundaries in the global structure in order to avoid destroying
the useful global dynamics.

3. In the current example, the intervention was made by specifying key poses.
Its effect is to change the global landscape of the dynamics when the system
reaches certain key points (Fig.[d). It is important to note that these land-
scapes do not correspond statically to a specified pose. Because the robot is
not statically fixed to the ground, the dynamical structure also depends on
the current orientation, contact state, and motion of the body as well as the
pose. Moreover, the pose making itself is affected by the dynamics, and here
there is a cyclic dependency. This cyclic problem structure is important in
the context of emergent structure, and we will discuss about this later.
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Previous dynamical systems approaches exploited limit cycle attractors[6l7}
8]. This corresponds to our notion of “intra-dynamics”, where intervention to
the system dynamics can be kept to minimum yet its stability is maintained.
This is because the strong attractor dynamics stabilizes itself. Our notion of
“inter-dynamics” emphasizes a complimentary point to the above; switching
from one global dynamics to another by sparse intervention at the boundary
of global dynamics structure. If the intervention is made within the attractor
structure, it may destroy the attractor because the intervention changes the
underlying dynamics. Our claim is that the system gains more degrees of freedom
at the boundaries between the attractor, and there the controller can take the
system along/across the boundary structure to a desired direction. The general
interface problem, mentioned earlier, can be understood well by the above notion
of boundary structures.

4 Humanoid for Whole-Body Dynamic Actions

Figure[® shows our current research platform. It has been developed at ETL and
then at The Univ. of Tokyoﬁ.

Most of the design efforts have been devoted to achieve generality and open-
ness, assuming no particular task or posture. The robot possesses 46 degrees
of freedom, with the height and weight of an average Japanese person. It was
intended to be an experimental platform to explore a novel principle of control-
ling complex embodied systems characterized by exploitation of natural physical
dynamics of the body, and sparse control at the boundaries of global structure
of interaction dynamics [9[10].

The idea of exploiting the physical interaction dynamics between a body and
the environment is shared by a number of researchers, for example [I1]. This is
closely related to the principle of ”cheap design” which states that intelligent
agents exploit the intrinsic dynamics of the agent-environment interaction [12].
However, what we are interested in is the more general problem of identifying
many different dynamics structures and navigating through them to achieve task
goals, which is an open problem.

The design criteria is to keep the system’s mobility range and strength as
humanly as possible. Also the shape of the system is made to closely match that
of a human. In order to achieve these objectives we also take into consideration
compactness and modularity, while maintaining high power to weight ratio for
the overall system. The details of the whole system will be presented in the
following sections.

3 Original mechanical design was done by A. Nagakubo. The overall system develop-
ment was conducted by Y. Kuniyoshi. G. Cheng made significant contribution to
the hardware debugging of the initial control system. Original control software was
developed by G. Cheng which was later replaced by a different software package
developed by Y. Ohmura.
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4.1 Design Criteria

In order to pursue the research framework stated so far, we need a humanoid
system whose embodiment is as close as possible to humans. However, with the
current technology, it is unrealistic to mimic the complete organic structure of
human body. Here, we are interested in overall mobility and interaction dynamics
with the environment. Therefore we focus on realizing the similiar motor perfor-
mance, mass distribution, and outer shape as the average human body. On the
other hand we ignore internal differences in a way such as using motors instead
of muscles and adopting metal structures instead of bones. We are well aware
of importance of physical properties of such organic components. However, with
the current state of the art, if we choose artificial muscles it will take many years
before we achieve the overall mobility and the whole body motor performance
comparable to humans. As such, our design is the result of strictly estimating
the technical trade-offs and balances for building a whole-body humanoid given
the current technological situation. Hence it is not ultimate and may change as
new technology becomes available.

The above considerations lead us to a unique set of physical specifica-
tions [13]: 1) the joint torques must be able to support its own body weight,
2) the joints should be torque controllable and back drivable, 3) allow motion
strategies to exploit inertia, such as, ballistic motion or dynamic motion, 4) the
overall dimensions must be as close as possible to a small adult human it should
have a smooth surface to allow arbitrary contact with surrounding objects; 6)
the degrees of freedom and joint motion ranges should be close to humans to
allow a broad range of motion.

In addition to these design considerations, the following criteria also needs to
be taken into account, the overall system should be light in weight while keeping
the requirement of high power. The overall mechanical system should be kept in
a modular fashion, allowing ease of access and maintainability. Compactness will
also need to be kept in order to keep overall proportion of the system’s shape.

4.2 Experiments

Two preliminary experiments with our humanoid are presented.

Figure [ shows a dynamic sitting up actiod. Here the robot swings up its
legs, swings them down and uses the inertia to bring up its torso. Rolling contact
at the bottom is smooth with the specially designed outer cover. It plays a crucial
role in this action.

Figure [0 shows simple dual-arm movement imitationd. The vision system
uses color-based (e.g. skin-color) temporal differentiation and attention control
based on simple knowledge of upright human posture, to detect the head and
the arms. In other words, the robot will focus its attention on anything that
it recognizes as an upright human Then it interprets the target posture with
regard to multiple postural primitives. The result of this interpretation invokes

4 This experiment was done by Ohmura
5 This experiment was done by Otani and Ohmura
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the humanoid’s dual-arm movement, achieving the interpreted posture by means
of balancing between the gravitational force and the directly controlled joint
torque. As a result, the robot’s arm movement appears quite natural.

In human interaction, smooth and autonomous transition between different
interaction modes is also very important. Cheng and Kuniyoshi [I4] built an
integrated system which is capable of auditory target detection, visual target
tracking, and real-time arm movement imitation, with a potential based at-
tention mechanism that enables on the one hand smooth integration of these
functionalities into the overall behavior, and on the other, transitions between
them.

Fig. 10. Snapshots of a dual-arm movement imitation performed by our humanoid.

5 Self Exploratory Learning of Body Schema

This and the following sections present our recent attempts to develop a neural
model for learning the global information structure of embodied interactions.

Our first experiment examines if simple spatio-temporal correlation can ex-
tract global strcture within the sensor data from embodied intraction. This could
provide the first step towards acquisition of a body schema.

5.1 Acquisition of Topographic Somatosensory Map

Figure illustrates one of our (Yorozu and Kuniyoshi) experiments with a
simulated baby. The model of the body has 250 tactile sensors (actually, pressure
sensors) distributed on its skin. All the limbs are driven by random signals in
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Fig. 11. The simulated baby body. Uupper left: Simulated baby body. Upper right: A
snapshot during random movement. Bottom: Topographic somatosensory cluster map.

a simulated water, as if a fetus is moving inside the womb, and the tactile
sensor data are collected. Then the spatio-temporal correlation is computed for
all the pairs of sensing points. Then the sensor points are plotted on a 2D
plane as a result of a self-organizing process in which the degree of pair-wise
correlation is represented as a spring constant connecting the two points. And
this is done for all pairwise relationships among the tactile points. The result
shows a topographic structure corresponding to the physical topography of the
body.

5.2 Bottom-Up Free Exploration of Sensory-Motor Patterns

In the previous example, the bodiliy movement was random, and the learning
system passively observes the incoming tactile data. Pfeifer et al. [T2] points out
that active sensory-motor coordination is essential for learning to categorize the
world. In the past models, the sensory-motor coordination strategy has been
pre-defined. In this section we show an early attempt to let a robot acquire a
repertoire of explorative behavior without any predefined behavioral primitives.
We designed a very simple robot body in a dynamics simulation environment as
shown in Fig.[I2 It consists of a ball and a stick whose endpoint is connected by
a motorized joint to the ball. Despite its simple structure, it can exhibit a rich
variety of motion due to its physical dynamics which involves inertia, gravity
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Fig. 12. A simple model for self exploratory sensory-motor learning. Left: Simulated
body. Right: Sensory-motor learning architecture.

and rolling contact. Tactile sensors are distributed all over the surface of the
robot, on both the ball and the stick.

A simple two-layer neural network as shown in Fig. [[2] was adopted for learn-
ing sensory-motor patterns. Each layer is a hopfield type network ofneurons with
non-monotonic output function [15]. The input layer takes tactile sensor data
which then gets transformed through the two layers and output as a motor com-
mand for the joint. An efferent copy of the motor command is fed back to the
input layer. The network does hebbian learning in real time, forming “trajectory
attractors” representing repetitive sensory-motor sequence patterns. No reward
or initial set of primitive behaviors are provided to the system. The system
initially generates random motion due to the noise term. After that it contin-
uously learns the sensory-motor patterns and as the learning proceeds and the
synaptic connections are modified, the sensory-motor transformation immedi-
ately changes. Thus the system behaves in a boot-strap (self-referential) mannar
in the sense that the learning modifies the explorative behavior, which then
changes the sensory-motor patterns to be learned, affecting the learning process.

After several thousand steps of learning, the system found a few interesting
behavior patterns. One example was lifting the bar and holding it still until the
ball rolls due to the weight of the bar. Another example was repetitively swinging
the bar and hit the ground so that the whole body “jumps”. These are two of
many possible ways to exploit the body-environment interaction dynamics to
experience consistently repeated sensory-motor patterns. We interpret that the
system discovered “bodily affordances” by acting on the body and self-guided
along the motion patterns which emerge naturally from the physical properties of
the body and the environment. This phenomenon may be similar to what Piaget
named “second order circular reactions” [L6], i.e. adaptively acquired behavior
patterns in which the self action generates sensory stimuli that triggers the same
action.

6 From Visual-Motor Learning to Neonatal Imitation

Imitation abilities of neonates discovered by Meltzoff and Moore implies
the existence of an innate mechanism in newborns for matching visual patterns
of other persons’ body movements to self movements. However, recent findings
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about rich exploratory movements of fetuses and extensive neural development
during this period suggest a possibility of self exploratory learning during the
fetus period and its effect on newborn imitation abilities.

Fig. 13. Visuo-Motor Learning Experiment. Left: Outlook of the robot. Right: View
from the robot’s eye.

As a synthetic approach to this hypothesis, we developed a visuo-motor neu-
ral learning system which consists of orientation selective visual movement rep-
resentation, distributed arm movement representation, and a high-dimensional
temporal sequence learning mechanism [18].

Initially, our robot generates random arm movements in front of its eye. At
this point the robot has no knowledge about the relationship between its arm
motor commands and the resulting visual patterns. A learning neural network
takes the visual motion (i.e. optical flow patterns) and proprioceptive data (i.e.
joint angles) mixed together as a high-dimensional sensory-motor vector. As
the arm moves, the network learns the temporal sequence of the sensory-motor
vectors as a “trajectory attractor” in its state space.

After the learning, a human comes in front of the robot showing an arm
movement. If it is similar to the one experienced by the robot in the past, then
the following will happen. The visual motion pattern of the human arm takes
the network state into the pre-learned trajectory attractor. Since the trajectory
goes through the sensory-motor state space, it automatically generates an arm
movement. This results in an apparent imitative response.

7 Implications of Three-Term Interaction Dynamics Idea

As a summary and discussions, let us get back to the idea of the ”three-term
interaction structure”, and discuss its relationship with the above presented ex-
amples, as well as implications to other standard interface problems, including
dynamic motion control, teleoperation, behavior imitation (teaching by show-
ing), cooperation, and communication.

Dynamic Motion Control: In whole body motion the robot-environment in-
teraction is strongly governed by the physical dynamics as determined by
gravity and inertia. Whenever there is this dominance of physical dynam-
ics it is best to interfere as little as possible with the intrinsic whole-body
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dynamics. Stated differently, in such cases it is best to control the robot
by sparse intervention. Rigid trajectory control is undesirable because this
would often lead to interference with the system’s natural dynamics.

Teleoperation: Modern teleoperation (i.e. remotely controlled by humans) sys-
tems have certain degrees of autonomous behavior capabilities. A human
operator sometimes experiences difficulty, e.g. the system’s behavior con-
flicts with the operator’s intention. This is a typical example of a failure of
interfacing two autonomous interactions. Moreover, as revealed by previous
works on “shared control” and “shared autonomy” [T920|21], it is desirable
that the human intervention can be made at dynamically changing level of
autonomous robot control at various times and situations through the task.
The idea of dynamically choosing non-destructive intervention points in the
ongoing intra-dynamics (i.e. autonomous behavior) of the system will be very
useful.

Teaching by Showing/Behavior Imitation: As shown in the previous case
study, essential information about the target task can be extracted at the
boundaries of each actions. Remember also that interventions to a dynamic
whole-body task can effectively be made at the boundaries of constituent ac-
tions. These two statements imply that in observational task learning or be-
havioral imitation, the essential information is extracted from, and exploited
at, the action boundaries. In the development of communication between a
mother and her child, communicative symbols initially emerge as private
ones that are understood only by the mother and the child. Such symbols
may have the property as action boundaries because the symbols emerge
through mutual imitative interactions between the mother and the child,
always accompanied by mutual efforts to obtain the common interpretation
of each other’s behavior [22].

Cooperation: It is straightforward to see the three-term structure in coop-
erative tasks. Two agents should effectively combine their individual task
performances. A failure to properly coupling the two autonomous dynamics
(i.e. each behavior) will result in conflicts and interferences. Then the task
performance will be worse than doing it alone. Intervening other’s task at
action boundaries is effective. The “cooperation by observation” [23] scheme
realizes the idea by invoking a helping behavior right at the time of action
boundaries.

Communication: Generating a symbolic expression which best describes self
actions, and interpreting a received expression and reflecting it on self behav-
ior is the most basic form of effective communication. This is quite similar
to the situation in behavioral imitation. Hence, effective situated communi-
cation may rely on proper identification of action boundaries.

Throughout the above discussions, an outstanding question is how to couple
two independent interaction dynamics and create a meaningful inter-dynamics
without destroying them.

Our hypotheses for the above problem are the following:
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1. Each intra-dynamics has a sparse global structure which is quasi-stable and
reproducible in its own context]. Such structure emerges as “boundaries”,
or “interference modes”, of underlying dynamics. And these boundaries are
“branching points” between one dynamics and the other.

2. External intervention/coupling can take place at these boundaries without
destroying the underlying dynamics. This way an external process can take
the system towards a desirable state from a global viewpoint.

3. A simplest mechanism for detecting/memorizing the global structure would
be a spatio-temporal correlation network with adaptivity. The distributed
correlation elements tune into the sensory-motor data flow. By introducing
a competition mechanism, or lateral inhibition, the network will create clus-
ters, each corresponding to different underlying dynamics. The boundaries
between the clusters may correspond to the global structure.

8 Conclusions

So far we presented our hypotheses and basic learning mechanisms through
several case studies. The core idea is that within each agent’s sensory-motor
interaction with the world, there is a natural global dynamical structure. This
structure emerges from natural physical constraints or interactions between mul-
tiple sensory-motor flows. And the interaction with the agent should take place
through an interface provided by this global structure, in order to effectively
influence but not destroy. We also presented neural mechanisms which has ba-
sic capability to detect, learn, and use (to generate behaviors) such a global
dynamical structure.

The above framework will eventually connect physical embodiment, sense of
self, understanding other’s actions, cooperation and communication. In short, it
suggests a pathway from humanoid embodiment to theory of mind.
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Abstract. The developmental approach enables us to build adaptive
robots, and furthermore, to understand the essence of intelligence from
the constructivist viewpoint. In this paper, a new design principle for
tactile sensors is proposed to investigate and to utilize developmental
processes of robots. Based on the design principle, an anthropomorphic
fingertip is developed. The fingertip is made of soft material with ran-
domly distributed receptors inside. The robot learns to acquire meaning-
ful information such as the slip and the object texture from the outputs
of receptors through interaction with the environment like a human does.
Several experimental results are shown to demonstrate its sensing ability
and applicability for the developmental approach.

1 Introduction

Robots are going out of the laboratories, and therefore, have to deal with an
uncertain real-world environment in which environmental change is more than
the designer can predict. Looking at biological systems, they might utilize the
“developmental process” to deal with such a real environment. Applying the
developmental process for designing robots provides us the comprehensive un-
derstanding of intelligence from the constructivist viewpoint [1], which makes it
possible to construct adaptive robots.

It is very difficult to implement physical development on a robot as far as we
do not use biological material. Instead, by implementing as many actuators and
sensors as possible, we can study how the robot develops the connection between
them through interaction with the environment. Although they have designed
and developed robots that have many degrees of freedom such as humanoids,
the variety and the number of sensors are still not sufficient.

A camera is the only sensor that has been utilized for the developmental
research so far: it has basically so many pixels that can be used for image pro-
cessing. By changing the image processing in a coarse-to—fine manner, for ex-
ample, we can simulate the developmental changes and investigate its effect in

F. lida et al. (Eds.): Embodied Artificial Intelligence, LNAI 3139, pp. 219-230} 2004.
(© Springer-Verlag Berlin Heidelberg 2004
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the process of learning [2J3]. For the other kinds of sensing modalities, however,
there is no developmental study to the best of the author’s knowledge.

In this paper, a new design principle for tactile sensors is proposed to enable
us to investigate and to utilize developmental processes of robots: embedding
as many receptors as possible in soft material randomly. Based on the design
principle, an anthropomorphic fingertip is developed. The word anthropomorphic
has two meanings: one is that the fingertip is made of soft material with randomly
distributed receptors inside and like a human does, the robot learns to acquire
meaningful information such as the slip and the object texture from the outputs
of receptors through interaction with the environment. The other is that the
structure of the fingertip is similar to that of a human’s; it consists of a bone, a
body, a skin layer, and randomly distributed receptors.

The remainder of this paper is organized as follows. First, an overview of
the existing design of tactile sensors is explained. Then, we introduce the design
of an anthropomorphic fingertip based on a new design principle that relies on
learning ability of the robot. Following that, several experimental results are
shown to demonstrate its sensing ability and applicability for the developmental
approach.

2 Toward Adaptive Manipulation: Overview

A human being can manipulate various objects by fingers dextrously and adap-
tively. Although there has been an enormous number of studies on robot hands
trying to reproduce such adaptive and dextrous manipulation [4], so far the per-
formance is not satisfactory. One of the reasons is that these existing hands are
basically designed and controlled so that the designers can understand the ma-
nipulation. Although it is easy for them to implement their knowledge to the
robot, it gives certain constraints on design and control of the robot hand, and as
a result, it prevents manipulation from being adaptive. If the robot would have
an ability to develop manipulation by itself, it would be freed by such constraints
and the resultant manipulation would be adaptive.

In order for a robot to learn and/or develop its own representation of manipu-
lation in its own sensor spaces, it should have several different sensing modalities.
Among such modalities, tactile sensing plays a great role to gather information
about the object and contact conditions. Many kinds of tactile sensors are pro-
posed (we can find a comprehensive survey in [5] until 1999). Sensors with dis-
tributed receptors are especially effective to observe detailed contact conditions
for adaptive manipulation. Many attempts have been made to construct such
sensors with pressure-conductive rubber [6], an optical position sensitive detec-
tor [7], capacitor arrays [SIIT0], a LC network [11], ultrasonic sensors [12], force
sensing resistance [13], conductive fabric [I4], and conductive gel [T5].

Almost all robotic fingertips that have been developed so far have their sens-
ing receptors only on their surfaces. One of the reasons is that the fingers are
basically made of rigid materials such as metals, and the receptors cannot be
embedded in a deeper part of the finger. Rigid fingertips make the control easy



Robot Finger Design for Developmental Tactile Interaction 221

since the position of the manipulated object is easily calculated by configura-
tions of the fingers. However, the fact that the receptors are only embedded
on the surface limits the sensing ability of existing robotic fingers. We humans
have many receptors (corpuscles) of several kinds broadly distributed in the fin-
ger. The receptors embedded in a deep part of the finger are able to acquire
the information filtered by its material property whereas the ones in a shallow
part are sensitive to high frequency transient phenomena. Therefore, it would be
possible to obtain more useful information about the object by combining the
sensory information at many different locations in the finger rather than just
using receptors on the surface.

Several studies mentioned that receptors embedded in soft material could
provide useful information about dynamic characteristics such as the slip and
the friction coefficient [16/I7/I8T9I20]. Although it is promising to get more in-
formation about them by increasing the number of receptors at various depths,
there have been very few studies on it. It is difficult for the designer to derive
the translation from the raw signals to meaningful information if the positions of
the receptors are not controlled and the property of material between them are
not known. Only Shinoda and his colleagues discussed on randomly distributed
receptors in a soft material [2T122] to the best of the author’s knowledge. How-
ever, they only showed the characteristics of one receptor, and did not study the
influence of the depth nor on the interplay of receptors.

3 Design of an Anthropomorphic Fingertip

3.1 Sensor Design That Relies on the Learning Ability

In order to translate raw signals into the meaningful information, the underlying
structure provided by bodily, environmental, and task constraints is essential.
For example, the electrical resistance of a strain gauge of a force sensor itself
does not make any sense. If the robot knows the resistance-to-strain translation
that is determined by the gauge material and structure and knows the strain-
to-force translation determined by the sensor physical structure, it can translate
the measured resistance into force.

A human designer usually calibrates the translation from the raw signals
to meaningful information. He or she understands the constraints and imple-
ments knowledge about them as a sensing model for a robot. Then, the robot
can behave properly even with a few receptors by compensating for a missing
information with the model. Receptors of existing sensors are, therefore, placed
regularly on relatively hard surface so that the designer can easily analyze the
structure. As long as the task of the robot is simple, such a sensing model is
functional. Recently, however, the task has become more complicated such as
handling of the objects with various properties (e.g. material, size, mass, etc.),
and the physical interaction between the finger and an object has also become
complicated (e.g. grasping with slippage, finger gait, etc). Consequently, the re-
alized behavior based on the human-designed sensing model is no longer robust
against modelling errors and disturbances.
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Fig. 1. A developed fingertip(left) and its cross sectional sketch(right): The fingertip
consists of a metal bar, a body, and a skin layer inspired by the structure of the human
finger. The body and the skin layer are made of different kinds of silicon rubber. Strain
gauges and PVDF films are embedded randomly in the body and the skin layer as
receptors.

Owing to the recent development, the learning function of a robot is now
ready to be used for many applications. If the robot can acquire the sensing model
through experience, the receptors can be distributed randomly in or on soft
material. The softness of a tactile sensor provides not only stability of grasping
and protection against strong impact forces, but also more sensing abilities than
hard sensors. It would even be possible for the robot to have a sensing ability
that is excluded by the human designed sensors whose receptors are placed
regularly. In this sense, the learning ability will change the design principle for
tactile sensors. This paper describes a new design principle for tactile sensors
that relies on the learning ability: embedding as many receptors as possible
randomly in soft material. The word “many” means not only the number
but also the variations of receptors.

It is obvious that the variety of receptors provides more sensing abilities.
Even with receptors of the same kind, the robot can get different information
from them in different depths since material existing between receptors play a
role of a low-pass filter. In this sense, embedding many receptors provides not
only redundancy, but also variety of sensing abilities. Another important point is
randomness: non-uniform and anisotropic sensor structure potentially provides
information that is excluded by the human design bias, that is, the uniformity
of the sensor structure.

3.2 Structure of the Finger

By following the design principle explained above, an anthropomorphic fingertip
is developed (Figure [l). The fingertip consists of a metal bar that plays a role
of a bone, a body, and a skin layer inspired by the structure of the human
finger. The silicon used for the skin layer is slightly harder than that for the
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Fig. 2. A procedure to build a soft fingertip:a metal bar and several receptors, strain
gauges and PVDF films are inserted into a mold, and silicon rubber is cast into it.
This mold is then inserted into another mold that is slightly bigger. The additional
receptors are implemented in this layer, then silicon rubber is again cast.

body. Strain gauges and PVDF (polyvinylidene fluoride) films are embedded
randomly both in the body and in the skin layer as receptors. A PVDF film is
sensitive to the strain velocity by using the piezo effect, whereas a strain gauge
measures the static strain. In the human skin, there are also several corpuscles
that are sensitive to the change of the strain (Meissner’s corpuscle and Vater-
Pacini corpuscle), and to the static strain (Merkel’s disk and Ruffini ending).
Since these receptors are embedded randomly, the robot has to learn to acquire
meaningful information such as the slip and the object texture from the outputs
of receptors through the interaction with the environment like a human does.

Figure [ (left) shows a complete soft fingertip. Its diameter and length are
2[cm] and 9[cm)], respectively. This finger has 6 strain gauges and 6 PVDF films
both in the body and the skin layer, which results in totally 24 receptors. As
mentioned above, the positions and the orientations of these receptors are not
determined, i.e. the designer or the robot cannot know the geometries of the
receptors beforehand.

We expect that the receptors of the same kind embedded in different positions
would be able to measure different physical properties. A strain gauge embedded
near the skin surface is expected to sense the local static strain between the skin
and the object surface whereas a gauge embedded near the bone is expected to
sense the total force exerted to the finger and is expected to be insensitive to
the local texture of the object. A PVDF film senses the strain velocity, which
means that it is more sensitive to the transient and the rapid strain changes
(or stick-slip motions) than the strain gauges whereas it cannot sense the static
strain. The silicon existing between two PVDF films is expected to function
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as a low-pass filter, therefore the difference between the signals is expected to
represent the local stick-slip interaction.

3.3 Procedure to Make a Fingertip

Figure2lshows the procedure to make the fingertip. First, a metal bar and several
receptors, strain gauges and PVDF films are inserted into a mold, and silicon
rubber is cast into it. The mold is put into the vacuum to remove bubbles, and
is baked in the oven to be solid. It is then inserted into another mold that is
slightly bigger. The additional receptors are implemented in this layer. Another
kind of liquid silicon rubber that is harder than the previous one is cast, and the
mold is put into the vacuum and is baked in the oven again.

4 Sensing Ability of the Fingertip

To investigate sensing ability of the anthropomorphic fingertip, it is mounted on
a robotic finger (Figure[d), and rubbed on four different materials: wood, paper,
cork, and vinyl. The finger is not force-controlled but position-controlled along
a pre-determined trajectory.

Fig. 3. The robot finger used for experiments: An anthropomorphic fingertip is at-
tached at the tip of a robot finger.

The data from the PVDF films are obtained from the rubbing experiments.
Figure[d shows variance of signals originating from a PVDF film in the skin layer
and that from another PVDF film in the body layer. In the figure, stars, crosses,
oblique crosses, and squares represent the data obtained during rubbing vinyl,
cork, paper, and wood, respectively. Since variance ellipsoids depicted in this
figure do not overlap each other, we can conclude that these four materials are
distinguishable by combining the outputs of these two receptors. It is important
to note that, as illustrated in this figure, the paper, the cork, and the vinyl
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cannot be identified only from the film in the skin layer. The same holds for the
wood, the vinyl, and the cork measured by the film in the body.

Since the finger is not force-controlled and the height of the surface is also
not precisely controlled, the contact force is not constant through the rubbing
process. This could be the main reason of the relatively large variance in the data
points obtained from the same material. We expect that, if the finger is precisely
controlled, the variance should be smaller so that one receptor is sufficient to
identify the material. However, even without such a precise control, it is shown
that the distributed receptors are able to distinguish the different materials.
From the viewpoint of the developmental process of the robot, this characteristics
would be particularly important since the robot would not be able to perform
the precise position and force control from the beginning.
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Fig. 4. The results from rubbing experiments: variance of signals of a PVDF film in the
skin layer and that in the body layer are plotted. In the figure, stars, crosses, oblique
crosses, and squares represent obtained data during rubbing vinyl, cork, paper, and
wood, respectively. A ellipsoid represents the variance ellipsoid for each material. The
paper, the cork, and the vinyl cannot be identified only from the film in the skin layer.
The same holds for the wood, the vinyl, and the cork measured by the film in the body.

5 Toward Development: Representation of the Slip

Situatedness is one of the most essential properties for a robot to be truly au-
tonomous [T]: an autonomous robot should have the perspective based on its
own sensory system. It is very difficult, however, to transfer the knowledge of a
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Fig. 5. A Hebbian network to find correlation between tactile and vision

designer into the control system of a situated robot. Therefore, the robot should
be able to “develop” itself by using the sensory data from its own receptors.

At the beginning of developmental process, the robot get the sensory data
flows but cannot see any correlation among them. If they come from the same
physical interaction with the environment, the flows should have a certain rela-
tion between them because of the underlying dynamics, and the robot would be
able to find it as a correlation after learning. The correlation should be robot’s
own representation of the interaction acquired through the developmental pro-
cess.

From this perspective, in this section, we investigate a case study of slippage.
The problem addressed here is how the robot can identify the correlation between
the data from the anthropomorphic finger and the visual sensory information
during the slippery interaction.

5.1 Network to Acquire Representation of the Slip

A simple Hebbian network is used to find correlation (Figure[H). There are two
layers: a tactile receptor layer and a vision sensor layer. Two neurons in the
vision layer are activated by the displacement of the image target in the image
plane along = and y—axes, respectively. The 6 strain gauges in the skin layer are
used, which are connected to the 6 neurons in the tactile receptor layer (PVDF
films are not used in this experiment).

Since the relation between the vision sensor and the tactile receptors is not
calibrated before learning, the weights between the neurons are initially 0. While
the finger is touching an object and rubbing on it, the vision sensor can observe
both the object and the fingertip. Therefore, when the tip slips, it is observed by
the vision sensor as the difference of displacements of the object and the finger
tip in the image plane. Simultaneously, the strain information can be obtained
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by the tactile receptors. If the direction of one tactile receptor happens to be
along the slip direction in the image plane, the connection between the neurons is
strengthened according to the Hebbian rule. Over time, the connection between
a vision neuron and a tactile neuron in a corresponding direction has certain
amount.

After some learning trials, the direction of a slip can be sensed by the tactile
receptors as well as the vision sensor. This provides the system redundancy
[1]. That is, even if the vision sensor cannot catch the slip information, for
example, because of occlusion, the slip can be detected from the network and
vice versa. An interesting aspect of this approach is the complementary nature
of vision and tactile sensors concerning the sensitivity. Since the vision sensor is
a non-contact sensor, the sensitivity (the minimum observable amount of a slip)
changes according to the distance between the eye and the object whereas that
of a tactile receptor does not change so much since the distance between the
object and the receptor does not change. Therefore, at the beginning of learning
when the vision sensor is mainly used, the sense of the slip is strongly affected
by the position and orientation of the object. After learning, tactile receptors
provide complemental information, and therefore, the sense will be insensitive
to the object position and orientation. This process is supposed to be finding
invariance in the observation.

In Figures [6land [7] a broken line and a solid line represent normalized move-
ment in the image plane along x axis (—1, 0, and 1 mean moving to —x direction,
stopping, and moving to +x direction, respectively) and the sum of the outputs
from the tactile sensor layer to the corresponding vision neuron, respectively.
The continuous movement of the object is observed as pulses in the vision not
as continuous signal because of the quantization of pixels.

Figure [6lshows the result from the first learning trial. The tactile output is 0
at the beginning since the the weights between the neurons are initially 0. There
is almost no correlation between the outputs of the vision sensor and the tactile
layer since the learning is not enough.

After 260 learning trials, the network obtains the correlation between them
(Figure [[). The output of the tactile layer predicts the movement in vision, that
is, at first the activation of the tactile sensors becomes larger, and then that of
the vision is activated since the visual image is quantized.

6 Discussion

This paper has described a new design principle for the tactile sensor to inves-
tigate and to utilize the developmental processes of robots. The ability of the
anthropomorphic fingertip that can discriminate vinyl, cork, paper, and wood is
provided by its softness and placement of receptors. The slippery interaction is
also mapped onto the multi-modal sensory space consisting of vision and tactile
as a set of distributed weights through robot’s interaction with the environment.

Since the receptors are randomly distributed in the soft fingertip, the de-
signer cannot map the physical phenomenon with the receptor outputs explicitly.
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Therefore, the robot has to learn the mapping through its own experience, and
to organize the outputs of receptors. The learning and organizing process is one
of most important developmental aspects of an autonomous robot. In this sense,
this design principle will shed a light on the developmental study of robots.

In the first experiment of the object discrimination, the category is given by
the designer. However, the category should be obtained by the robot itself based
on its behavioral result. It does not have to discriminate the objects as far as the
probability of achieving a given task (e.g. manipulating or grasping an object)
does not change. This is very important point since the developmental process
of the robot must be triggered by the internal motivation of the agent.

We expect that the study of an anthropomorphic fingertip could also pro-
vide an additional insight to the developmental process of human manipulation.
Although it is still under a developing stage, the representation of the slip dis-
cussed in this paper pointed out some interesting issues toward future. Partic-
ularly, some interesting issues include (a) what kind of mechanism is effective
to acquire such distributed representation and (b) how we can utilize such a
representation for the adaptive behaviors.
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Abstract. The dominant motivational paradigm in embodied Al so far
is based on the classical behaviorist approach of reward and punishment.
The paper introduces a new principle based on 'flow theory’. This new,
‘autotelic’, principle proposes that agents can become self-motivated if
their target is to balance challenges and skills. The paper presents an op-
erational version of this principle and argues that it enables a developing
robot to self-regulate its development.

1 Introduction

The design and implementation of self-developing robots has become a focal
point of recent efforts in robotics and Al research [21]. It builds further on the
work of developmental psychologists, who have a long history of studying ’epi-
genetic’ or ’ontogenetic’ development [6], [8]. A lot of research in developmental
robotics focuses on finding powerful learning mechanisms that can run continu-
ously in open-ended environments [I1]. This paper turns to a more global issue:
How can the developmental process as a whole be orchestrated.

The problem of regulating development is very challenging for three reasons.
(1) Certain things often cannot be learned before other things are mastered, so
the developmental process must be scaffolded somehow, to enable bootstrapping
from simple to complex. Thus, it is not possible to learn fine-grained control of
grasping if there is no ability to identify and track the objects that need to be
grasped. (2) In a complex agent, each component depends on others, either to
provide input or to produce appropriate feedback. But if there are many sub-
components, each developing at their own pace, regulating global development
becomes a non-trivial issue. (3) An agent may reach a level of performance which
is adequate with respect to a given environment but which is nevertheless a lo-
cal maximum in the sense that a richer interaction can be achieved by further
exploration and development. So a big challenge is to avoid that the agent gets
stuck in development, even if this means a decreased performance in the short
run.

Some researchers have proposed that nothing special needs to be done to or-
chestrate the developmental process, because the development of one skill natu-
rally creates new opportunities for the development of other skills in a changing
ontogenetic landscape [19]. For example, once the arm can be controlled, it is
possible to start exploring the uses of the hand. Although it is obviously the
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case that one opportunity may lead to the next, it is now generally recognised
that more needs to be done, particularly to avoid that the agent remains in
local maxima which do not exploit the full capacity of what is possible. Three
approaches have already been discussed in the literature.

— Scaling of input complexity
A first group of researchers has proposed that development can be organ-
ised by regulating the complexity of the external environment. This way the
agent can build up capacity in a simple environment before tackling addi-
tional challenges. Usually a small subtask is isolated and the agent is trained
for that specific subtask with prepared scaffolded data [1]], [B]. In more so-
phisticated applications, several stages and subcompetences are identified
and input data is carefully prepared to pull the agent through each stage.
[20].

— Scaffolding of reward function
Other researchers have proposed to scaffold the reward function, i.e. to give
external feedback to the agent which makes sure that simpler and founda-
tional skills are learned before more complex skills are tackled and that the
stakes are increased as soon as steady performance has been reached [21].
In the case of language development for example, we could envision first a
high reward for producing single word sentences, then a higher reward for
multiple-word sentences, then a higher reward for constructing grammatical
phrases with increased complexity.

— Staging of resources
Yet another approach is to stage the resources available to the agent in a
kind of 'maturational schedule’. For example, Elman [5] has shown that a
recurrent neural network can be trained first with a small ’look back’ win-
dow, then this window is progressively increased to take more of past input
into account. Such an approach has been shown to give better performance
compared to one where the full complexity of internal resources is available
from the beginning.

All these approaches are valuable and have shown to yield interesting results.
Moreover they are not completely devoid of naturalness because in the case of in-
fants, caregivers often scaffold the environment or "up the ante’ to push the infant
to higher competence. However these approaches assume a very strong interven-
tion by ’trainers’ and/or a careful a priori design of developmental scenarios.
The real world always presents itself with the same complexity to the learner
and it is therefore artificial to constrain it. It would be much more desirable
if the agent could develop independently and autonomously in an open-ended
environment by actively self-regulating his own development.

This is precisely the goal of the research reported in this paper: a general
principle is proposed by which a complex agent could self-regulate its-build up
of skills and knowledge without the need for the intervention of a designer to
scaffold the environment, stage the reward functions, or bring resources pro-
gressively on-line in a maturational schedule. The main idea is to introduce a
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new motivational principle gleaned from recent work in humanistic psychology.
This principle is introduced in the next section of the paper. Further sections
present an operationalisation of this principle. We have already conducted var-
ious experiments to exercise the principle in the context of grounded language
development, [I8]. The results are encouraging and will be reported in more
detail in forthcoming papers.

2 Motivation and Flow

Reinforcement Learning

Most models in psychology and neuroscience are still rooted in the behavior-
ist framework of reward and punishment, originallly coming from the work of
Skinner and his associates [16]. Also a lot of autonomous robotics work, particu-
larly under the banner of reinforcement learning, is implicitly based on the same
approach. This theory makes four major assumptions.

First, it assumes that the overall goal of the organism is to keep its critical
parameters for survival within viable bounds [T2]. The challenge of a developing
organism is to acquire the necessary behaviors so that such a viable state is
maintained, or to adapt the behaviors if the environment changes.

Second, it argues that certain behaviors get rewarded, for example with food
or other means that give direct pleasure, and others are punished, for example
through the inducement of corporal pain. Rewards reinforce specific behaviors
because they inform the organism that they are beneficial, in other words that a
viable state can be reached and maintained. Punishment signals that the behav-
iors that were enacted need to be abandoned or new knowledge and skills need
to be acquired. In natural circumstances, reward and punishment is generated
by the environment.

Third, it proposes that organisms start with a repertoire of reflex behaviors
and an innate value system. New behaviors are shaped by reward and punish-
ment. When a trainer or educator hands out the reward or punishment, she
can push development in specific directions and the trainer’s value system may
become progressively internalised by the trainee.

Fourth, classical behaviorism proposes that this reinforcement framework
is an adequate theory of motivation, in the sense that the main purpose of the
organism is to seek reward and avoid punishment, and so all the rest (acquisition
of new behaviors and internalisation of a value system) follows.

Flow Theory

More recently, a complementary motivational theory has been proposed in psy-
chology, which points to a richer notion of motivation. This theory was originally
developed by the humanistic psychologist Csikszenmihalyi, based on studying
the activities of painters, rock climbers, surgeons, and other people who showed
to be deeply involved in some very complex activity, often for the sake of doing
it, i.e. without direct reward in the form of financial or status compensation [2].
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He called these activities autotelic. ” Autotelic” signifies that the motivational
driving force ("telos”) comes from the individual herself ("auto”) instead of from
an external source, administered by rewards and punishments.

Autotelic activities induce a strong form of enjoyment which has been char-
acterised as "flow”. The word ”flow” is a common sense word and so there is a
risk to interpret it too broadly. Csikszenmihalyi intends a restricted usage, being
a state which often occurs as a side effect of autotelic activities:

People concentrate their attention on a limited stimulus field, forget per-
sonal problems, lose their sense of time and of themselves, feel competent
and in control, and have a sense of harmony and union with their sur-
roundings. (...) a person enjoys what he or she is doing and ceases to
worry about whether the activity will be productive and whether it will
be rewarded. o.c. p. 182.

Because the activity is enjoyable, the person who experiences this enjoyment
seeks it again, and therefore it becomes self-motivated. Moreover due to the high
concentration and the strong self-motivation, learning takes place very fast. The
learner is eager to find the necessary sources and tools herself and spends time
on the acquisition of skills, even if they are not exciting in themselves, as long
as they contribute to the autotelic activity.

Given this description, it is quite obvious that many people will have ex-
perienced some form of flow in their life, and that children in particular enter
into flow experiences quite often, particularly during play. Flow is sometimes
associated with the ultimate high experience of the rock climber that has fi-
nally managed to climb Mount Everest, but that is an exceptional situation.
Flow - as defined here - is much more common and can just as well happen in
every-day experiences like playing with children or engaging in a long term love
relationship.

It is also important to distinguish flow from directly pleasurable activities like
going down a roller coaster. A key difference is that the activity must in itself
be challenging - otherwise there is no feeling of satisfaction after difficulties have
been surmounted. Moreover there must be a steady progression in the nature
and particularly the level of the challenge. This is the reason why child rearing
can be so enjoyable and fascinating. A child keeps developing all the time -
which is what makes the interaction fun - and that creates continuously new
challenges for the parent to figure out what she is thinking, what she might
want to do or not do, and so on. The rock climber can also scale up the level
of difficulty with which rocks are being climbed or the kinds of rocks that are
tackled. Similarly, the musician can first play easy pieces and then steadily move
up. she can first play with other amateur musicians and then play with better
and better musicians. The performance can be first for a few friends, but then
for a larger and larger unknown audience.

An obvious key question is: What makes activities autotelic? Here comes
Csikszenmihalyi’s most important contribution, I believe. He argues that it lies in
a balance between high challenge, generated through the activity and perceived
as meaningful to the individual, and the skill required to cope with this challenge:
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Common to all these forms of autotelic involvement is a matching of
personal skills against a range of physical or symbolic opportunities for
action that represent meaningful challenges to the individual. o.c. p. 181

When the challenge is too high for the available skill, in other words the
opportunity for action is so bewildering that no clear course can be seen, and
when there is at the same time no hope to develop appropriate skills by learn-
ing, anxiety sets in and the person gets paralysed and eventually may develop
symptoms of withdrawal and depression. When the challenge is too low for the
available skill, boredom sets in and the long term reaction may be equally nega-
tive. The optimal regime is somewhere between the two, when there is a match
of challenge and skill. It follows that it is important for the individual to be able
to decrease challenge when it is too high so as to get an opportunity to increase
skills, but it is equally important that the individual can increase challenge when
the skill has become higher than required to cope with the challenge, or that the
environment generates new opportunities for the individual to grow.

Let us now see how these intuitive ideas can be operationalised into a design
principle that can be implemented on physical self-developing robots.

3 Operationalising the Autotelic Principle

A cognitive agent is a physically embodied organism embedded in an environ-
ment in which there is a steady stream of sensori-motor inputs and a steady
stream of decisions for action which translate into motor commands or internal
state changes, such as switch goals or move to another location in the world. The
key challenge for the agent is to survive in this environment and hence choose
the right action based on an interpretation of the current situation.

We assume that the agent is organised in terms of a number of sub-agencies
further called components. Each component establishes an input-output map-
ping based on knowledge and/or skill. For example, a segmentation component
takes a camera bitmap and produces a list of segments using some segmentation
algorithm. Each component requires a set of resources (memory, computer time)
and makes use of knowledge or skill that is typically adapted or learned. For
example, the segmentation algorithm may progressively build up a database of
the shapes or movement trajectories of the objects in the environment so that
segmentation can be done more quickly or more reliably.

A realistic system needs of course many components. For example, in the
case of an embodied agent interacting through language with another agent [17],
we need components for grounding world models through vision, speech and
gesture recognition, speech and gesture production, selection of a topic, concep-
tualisation of what to say, lexicon lookup, grammatical parsing and production,
interpretation of semantic structures, dialog management, etc.

The autotelic principle suggests that the balancing of skill and challenge
should be the fundamental motivational driving force of the agent. This implies
(1) that each component must be parameterised so that challenge levels can be
self-adjusted based on self-monitoring of performance, (2) that each component
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must have the ability to increase skill to cope with new challenge, and (3) that
there is a global dynamics regulating the adjustement (both increase and de-
crease) of challenge levels. The reward function of the total agent is the degree
of balance between challenge and skill for each of its components. The increase
in complexity of the agent’s behavior (and hence the kinds of tasks and environ-
mental complexity it can handle) will be an emergent side effect of the system’s
effort to keep this balance between challenge and skill.
The following subsections provide more detail on each of these aspects.

3.1 Parameterisation of Components

Each component of the system must be parameterised to reflect different chal-
lenge levels. The nature of the parameterisation obviously depends on the task
that the component must achieve and on the nature of the algorithms that are
used. For example, suppose that a robot has a subsystem that has the task of
moving an object using vision and hand/arm motor control. One parameterisa-
tion of such a component could concern the precision with which the object is to
be moved: Is pushing it aside in a broad gesture enough, or should the object be
picked up and put down carefully in a precise location. Another parameter is the
nature of the object: Is it of a simple uniform shape or does it contain handles or
other structures that need to be recognised and used to manipulate the object.
Another parameter concerns the weight of the object. A heavy weight might
require the agent to adopt a specific posture so as not to get out of balance.

Formally, we associate with each component c¢; a parameter vector
(Pi1s---Piny- The set of all parameters for all m components in the agent forms a
multi-dimensional parameter space P. At any point in time, the agent s adopts
a particular configuration of these parameters. p(s,t)inP.

The problem of self-regulation in development can now be seen as a search
process in a multi-dimensional parameter space to maintain optimal (or ac-
ceptable) performance. The performance is determined by a cost function
C : P— > R where R is a real number between 0.0 and 1.0. Formally, the
goal is to find a configuration p(s,t) such that: C(p(s,t)) = Copr where Copy is
the optimum cost.

Given this formulation, many techniques from optimisation theory (such as
the Simplex algorithm, combinatorial optimisation, simulated annealing, evo-
lutionary programming, etc.) become relevant. There can be little doubt that
we are dealing with an NP-hard problem because the parameter space for any
realistic developmental system is typically very large. So we must expect approx-
imations, sub-optimal performance, and the use of heuristics. Moreover, the goal
of the developmental system is not to reach a stable state, but to keep exploring
the parameter landscape so as to maintain a balance of challenge and skill. In
other words, as soon as a stable state is reached there should be a force to pull
the system out of equilibrium again (see next section).



The Autotelic Principle 237

3.2 Monitoring Performance (The Cost Function)

Next, each component must have a subprocess to monitor the performance of
that component. Various types of monitors can normally be formulated easily
for a particular component. Performance data is collected over a certain window
of time, known as the observation window, and values are typically averaged and
then compared to desired performance levels.

Thus there can be various performance measures related to the nature of
the task that a component is trying to achieve. For example, a component in
a language production system concerned with lexicon lookup can monitor how
far the lexicon can cover all the meanings that are required to be expressed
and how far the words that were chosen have been understood by the hearer.
The optimal levels for these performance measures must be defined, and they
are often related to challenge parameters. For example in lexicon lookup, one
challenge is to keep the ratio between the number of words used and the number
of predicates covered low (pushing the system to create words with complex
meanings), another challenge is to increase the certainty with which a certain
word has a certain meaning (pushing the system to seek disambiguated words
as much as possible). In these cases, the monitored value reflects how far actual
performance deviates from the desired performance level.

Without loss of generality, we assume that monitors yield a real value in
the range [0,1] with 1 being optimal performance for a specific dimension. We
associate with each component ¢; and with the total agent cra monitor vector
(M1, ..., Min). The set of all monitors for all m components in the system (and
the total) forms a multi-dimensional space and system performance in response
to a given stream of environmental stimuli traces a trajectory in this space. The
performance of the agent at a time t, denoted as M (s, t), is the averaged sum of
the performance of all monitors for all components actively used by the agent.
We can then define the cost function as C(P(s,t)) = 1.0 — M(s,t), so that
Copt = 0.0.

3.3 Learning and Skill Levels

When the developing system is attempting to establish its global input-output
mapping by chaining the mappings of each of its subcomponents, various fail-
ures may occur. Moreover, even if a mapping could be established, there may
be a negative feedback signal later. Each component of the agent should be
equiped with mechanisms to try and repair these failures. It is not important
in the present context what kind of mechanisms are used. They could range
from methods to increase needed resources (for example increase the memory
available to a component), simple learning mechanisms (such as various forms
of neural networks), or sophisticated symbolic machine learning techniques.

It is necessary for the agent to internally measure characteristics of the skill
level of each component so that the system can track whether there is any
significant change. For example, the amount of memory required by a component,
the number of rules learned, the number of nodes or links in a network, etc. can
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all be quantified so that their evolution during development can be followed.
Each component ¢; has therefore an associated skill vector (s; 1, ..., s; ) which
measures knowledge and skill levels.

It follows that each component ¢; (and the agent as a whole) has an associated
triple ¢; = (P, j, M 1, Si1), where P; j = (p; 1, ...Din) is the challenge parameter
vector, M, = (m;1,...,m; ) is the monitor vector and S;; = (s;1,..., ;1) is
the skill vector.

4 Self-Regulation

Assuming that all components of the developing agent are designed this way, we
can now focus on the global behavior of the agent, and particular the strategy to
regulate challenge levels for a smooth, progressive self-development. The global
system is an instance of combinatorial optimisation and hence has the same
structure as well-known optimisation algorithms such as simulated annealing [9],
in which a configuration of parameters needs to be found which gives optimal
performance. There are two complications compared to traditional optimisation
tasks: (1) The cost of a parameter configuration cannot simply be computed by
applying a simple function (as in the travelling sales man for example, where
cost is basically the length of a path) but must be derived from monitoring
actual performance of the system over a particular period of time, including
enought time to achieve the acquisition of the necessary skills to reach a certain
performance level, (2) this monitoring period must include enough time for the
system to acquire the necessary skills to reach a certain performance level. It
is to be noted that the objective is not to get optimal performance, but rather
to explore the landscape of possibilities in such a way that a higher degree of
complexity is reached.

Optimization algorithms typically combine iterated improvement, in which
there are small-scale changes to a configuration in order to find optimal param-
eter settings in a hill-climbing process, and randomisation, in which there is a
change in a parameter which may initially cause a decrease in performance but
helps the system to get out of a local minimum. Both aspects are present in the
algorithms that we propose in the form of two alternating phases: (1) a phase
in which challenge parameters are clamped until a steady performance level is
reached after increases in skill levels through learning or resource allocation, this
is called the operation phase, (2) a phase in which the challenge parameters are
changed either because a steady performance could be reached, and so the skill
level is getting too high for the challenge posed, or because performance could
not be reached, and so the challenge is too high for the skill level. This is called
the shake-up phase.

In our experiments to date we have found that the system should start with
the lowest challenge levels possible for all components (instead of starting with
a random configuration) so as to build up steadily in a bottom-up fashion.
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4.1 Operation Phase

The operation phase assumes that the challenge parameters are set at certain
levels. The agent exercises its components and monitors the performance of each.
A component becomes active when its various inputs are available. In case of
failures, each component is assumed to have a set of processes (called ’repairs’)
that can be used to fix the failure. For example, if a grasp action failed, the
categorisation component receives a negative feedback signal and must extend
its categorial repertoire to distinguish a new situation. Some of the repairs just
involve the addition of additional resources, such as more memory or more pro-
cessing cycles, others may require more sophisticated forms of learning. Because
there are many possible failures in a given run and many possible repairs, some
choice must be made about which repairs will be tried and how many.
The operation phase can be algorithmically described as follows:

Procedure Operation Phase

1. Select all executable components, i.e. components for which inputs are avail-
able, and activate them.

2. Monitor performance of these components (Could the input-output mapping
be established? In how far does it satisfy the criteria set by current challenge
parameters?)

3. If a component fails, extract a list of possible repairs and add them to the
‘possible repair list’.

4. Consider the next series of components (go to step 1). If no more components
can be executed, go to step 5.

5. Given a set of repair on the 'possible repair list’. First filter out those repairs
that were executed on the same input stimuli, but failed. If there are repairs
left, select the one(s) with the highest estimated effectiveness and execute
it. If there are no more repairs restart from 0. A possible variation which
considerable speeds up development is to restart the execution of components
with the same input stimuli in order to attempt a solution.

4.2 Shake Up Phase

The goal of the shake up phase is to adjust the challenge parameters. In most
combinatorial optimisation algorithms (such as simulated annealing) this is done
in a random fashion by selecting arbitrarily a parameter and changing it. How-
ever, given the size of the parameter space for developmental systems of realistic
complexity, such a weak search method does not give adequate results. Instead
it is necessary to adapt parameters in a more structured way and maximally
exploit available heuristics.

The shake up phase takes place after the system has sufficient experience
with a given parameter setting. Sufficient experience means that the average
performance level of each of the components and of the total agent does no
longer change significantly during specific observation windows, and that there
is no longer any significant increase in skill.

Two situations can now occur:
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1. Performance does not reach anywhere near the desired levels. This means
that the challenge levels are too high and that learning is no longer improving
performance. We call this the A-state (where A comes from Anxiety).

2. Performance is consistently at a very high level. This means that operation
of all components becomes routine and there is a potential for increased
challenge. We call this the B-state (where B comes from Boredom).

Depending on the specific state, specific actions can be performed. Moreover
a fine-grained analysis of these states is possible because performance for one
component can be very high whereas that of another one can be very low. So
changes to parameters should be heuristically guided by taking into account
which components are in the A-state and which ones are in the B-state.

Another source of heuristic information is the dependency of components
on each other. If a component is in the A-state, then this can be due to the
complexity of the output coming from components that feed into it.

The final source of heuristic information is performance on the previous pa-
rameter configuration. Because optimisation algorithms are known to require
an iterated approach towards optimal configurations, it is necessary to locally
explore the parameter space hill climbing towards an adequate solution.

Procedure for the A-state

The goal of this procedure is to decide which challenge parameters to de-
crease.

1. If the previous parameter configuration had a better performance than the
current one, then first switch back to the earlier configuration before making
any change.

2. Select all components which are in the A-state. Either one of the challenge
parameters must be decreased or else, one of the components feeding into
it must be signalled to decrease the complexity of its output, by a recursive
application of step 2. This step generates a set of possible choices for pa-
rameter adaptation. These choices can be heuristically ordered based on the
performance of the components involved.

3. Choose one or more parameters, enact the change, and go back to the
Operation Phase.

Procedure for the B-state

The goal of this procedure is to decide which challenge parameters to increase.
There is a steady performance with the given parameters but there is perhaps
an opportunity for further increase in skill. Note that this phase correspondence
to the 'randomisation’ phase of many combinatorial optimisation algorithms,
although the parameter change is not completely random.

1. Collect all components which are in the B-state. The possibilities are: to
increase one of the challenge parameters of this component, or else to recur-
sively collect one of the challenge parameters that give input to this com-
ponent. The possibilities can again be heuristically ordered based on the
performance of the components involved.
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2. Choose one or more of these parameters, enact the change, and go back to
the Operation Phase.

Note that a record must be kept of parameter configurations and their asso-
ciated performance in order to backtrack if needed.

We also know from our experiments that a conservative strategy (where only
one repair is executed in the Operation Phase, and one parameter is changed in
the Shake Up Phase) is much more desirable than drastic and rapid change.

From the viewpoint of optimization theory, the need for this shake-up pro-
cess is not surprising. Optimization algorithms like simulated annealing typically
combine iterated improvement, in which there are small-scale changes to a con-
figuration in order to find optimal parameter settings in a hill-climbing process,
and randomization, in which there is a change in a parameter which may initially
cause a decrease in performance but helps the system to get out of a local min-
imum [14]. In fact it is only because of randomization that these local minima,
i.e. situations where a stable but suboptimal solution is reached, can be avoided.
Given that a complex cognitive agent is exploring a vast parameter space, the
problem is an NP-hard (i.e. nondeterministic polynomial time-hard) problem as
defined according

5 Conclusions

The paper has focused on the problem how an agent can self-regulate his own
developmental process. It has proposed the autotelic principle, as a way to go
beyond the classical reinforcement learning framework initiated by behavior-
ist psychology. There must be (i) ways to monitor performance and change in
knowledge, skill, or resource use, (ii) ways to control the challenge level for the
different components of the agent, and (iii) a general mechanism that self-adjusts
challenge levels or shakes the system up to push the agent towards new heights.
The motivational structure of the agent continuously tries to strike a balance
between the highest possible level of challenge and skill.

Acknowledgement. I am indebted to Frederic Kaplan for many discussions
on the architecture of agents.
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Abstract. In this paper, we try to demonstrate the capability of a very
simple architecture to learn to recognize and reproduce facial expres-
sions without the innate capability to recognize the facial expressions
of others. In the first part, the main properties of an algebra useful to
describe architectures devoted to the control of autonomous and embod-
ied “intelligent” systems are described. Next, we propose a very simple
architecture and study the conditions for a stable behavior learning. We
show the solution relies on the importance of the interactions with an-
other system/agent knowing already a set of emotional expressions. A
condition for the learning stability of the proposed architecture is de-
rived. The teacher agent must act as a mirror of the baby agent (and
not as a classical teacher). In conclusion, we discuss the limitations of
the proposed formalism and encourage people to imagine more power-
ful theoretical frameworks in order to compare and analyze the different
“intelligent” systems that could be developed.

1 Introduction

Nowadays hardware and software technologies allow to build more and more
complex artifacts. Unfortunately, we are almost unable to compare two control
architectures proposed to solve one given problem. Of course, one can try
an experimental comparison on a given benchmark but the results focus on
the optimality regarding the benchmark (how to deal with really unknown or
unpredictable events?). We should be able to analyze, compare and predict in
a formal way the behaviors of different control architectures. For instance, we
must be able to decide if two architectures belong or not to the same family
and can be reduced to a single architecture.

On another level, new design principles are proposed to create more “intel-
ligent” systems [1] but there is no real formalization of these principles. The
only way to correctly understand and use them is to have a long explanation
build on examples showing cases of success stories (examples of good robotic

F. lida et al. (Eds.): Embodied Artificial Intelligence, LNAI 3139, pp. 243-258] 2004.
(© Springer-Verlag Berlin Heidelberg 2004
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architectures). Hence, we have good intuitions about what to do or not to
do to build a control architecture but it remains difficult to deal with really
complex systems. Our situation can be compared to the period before Galileo
when people knew objects fall but were unable to relate that to the concept of
mass and acceleration in order to predict what will happen in new experiments.
We urgently need tools to analyze both natural and artificial intelligent
systems. Previous works have focused on mathematical tools to formalize pure
behaviorist or reactive systems [2]. People have also tried with no real success
to measure the complexity (in terms of fractal dimension for instance) of very
simple behaviors like an obstacle avoidance [3]. The most interesting tools
are dedicated to specific part of our global problem such as learning (see NN
literature), dynamical systems [4] or some game theory aspects [5]. Yet, it
remains difficult to overstep the old frame of the cybernetics [6/7]. Finding
the fundamental variables and parameters regarding some particular cognitive
capabilities will be a a long and difficult work but we believe this should be
related to the invariant properties of cognitive mechanisms and to the variation
laws linking learning and embodiment.

In the present paper, we would like to show that a mathematical formalism
used previously to represent for instance a control architecture dedicated to the
visual homing [], can also be used to build a simple theoretical model of the
development of the capability to express and recognize more and more complex
facial expressions. We will try to discuss, using this mathematical formalism,
which are the basic mechanisms necessary to allow a naive agent to acquire
the capability to understand/read the facial emotions of a teacher agent and to
mimic them (so as to become a teacher and to allow turn taking in an emotion
expression game). We will try to show that a newborn do not need a hardwired
mechanism of emotion recognition to begin to interact in emotional games with
adults. At last, we will discuss the drawback of the proposed formalism and try
to propose directions for future researches since this work is at its very beginning.

2 Basic Formalism of a Cognitive System

We summarize here the basis of our mathematical formalism. Figure [T shows
a typical control architecture for what we will call a cognitiv system (CS).
The input and output of a CS are represented by vectors in the “bracket” nota-
tiond. An input or output vector x (column vector of size m) is noted |z) with
|z) € R+ while its transposed vector is noted (x| . Hence (x|x) is a scalar rep-

! The term cognitive must be understood here in the sense of the study of particu-
lar cognitive capabilities and not as a positive a priori for any kind of cognitivist
approach.

2 The formalism is inspired from Hilbert space used in quantum mechanics. Neverthe-
less, in our case it is not an Hilbert space since the operator is not linear...

3 We consider the components of the different input/output vectors can only be pos-
itive/activated or null/inactivated. Negative activities are banned to avoid positive
effects when combined with a negative weight matrix.
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resenting the square of |z) norm. The multiplication of a vector |z) by a matrix
A is |y) = Alz) with |y) € R™ for a matrix A of size n X m.

Actuators

Sensors

Input Output
k
|z) ly)
W

ENVIRONMENT a) |x> — |y>:k(W|X>) b)

Fig. 1. a) Typical architecture that can be manipulated by our formalism. b) Graphical
representation and formalism of the connection between 2 boxes in a CS.

A CS is supposed to be made of several elements or nodes or boxes associ-
ated with input information, intermediate processes and output (command of
actions). We can consider that any element of a CS filters an input vector ac-
cording to a matrix of weights W and a non-linear operator k. This operator
represents the way to use the W matrix and the pattern of interactions between
the elements of the same block. It can be a simple scalar product (or distance
measure) or even a more complex operator such as an “If...then...else...” treat-
ment (hard decision making), a pattern of lateral interactions in the case of a
competitive structure, a recurrent feedback in the case of a dynamical system,
a shifting mechanism, a mechanism to control a focus of the attention... Hence,
we can consider these elements as “neurons” even if they can be more complex
algorithmic elements in other programming languages. For instance, in the case
of a simple WTAA box, we can write the WTA output ly) is wta(A|z)) with
ly) = (0, ...,y;,...0) and j = ArgMax(q;) and ¢; = (A;|z). In the case of a Koho-
nen map, |y) = koh(Alx)), the main difference is the way the output is computed:
¢ = >_;|Aij — xj|. To be more precise, we should write |y) = koh(A4, |z)). Be-
cause, in the general case, an operator can have an arbitrary number of input
groups, we will consider the recognition of an input is performed according to
the type of its associated weight matrix. For instance, “one to one” input/output
connections represented by the general identity weight matrix I is considered as
the signature of a reflex pathway (because there is almost no interest to con-
sider “one to one” learnable links). Basically, we distinguish 2 main types of
connectivity according to their learning capabilities (learning possible or not):
the “one to one” links (see fig. [Zh) and the “one to many” connections (see fig.
Bb) which are used for pattern matching processes, categorization... or all the
other possible filtering. “One to many” connections will be represented in gen-
eral by a A. In the case of a complex competitive and conditioning structure

4 Winner Takes All



246 P. Gaussier, K. Prepin, and J. Nadel

with 1 unconditional (US) and 2 conditional (CS) inputs, we should write for in-
stance |y) = ¢(A1,|CS1), As,|CS3),I,|US)). To avoid too many commas in the
operator expression, we simply write |y) = c(A1|C’Sl>,A2|CS2>,I|US>)E. This
allows to be sure a particular matrix is always associated to the correct input
vector but it does not mean the matrix has to be multiplied by the vector (this
computation choice is defined by the operator itself).

Input Output Input Output
L]

@) v} B )
o) gy = etle))  la) —D=ly) = c(Ala))
one to one links a one to all links b

Fig. 2. Arrows with one stroke represent “one to one” reflex connections (one input
connected to one output in an injective manner). Arrows with labels and 2 parallel
strokes represent “one to many” modifiable connections between input and output
nodes. a) Unconditional “one to one” connections (used as a reflex link) between two
groups. Upper image is the graphical representation and lower image is the formal
notation. b) “One to many” connections with a competitive group representing the
categorization of the input stimulus at the level of the output group.

The main difference with classical automata networks is that most of our
operators can adapt or learn online new input/output associations according to
their associated 1earninl§; rule. For instance, in the case of a classical Kohonen
rule, we should write ddt’” = koh_learning (|y), |x)). Hence, 2 equations have to
be written for each elementary box: one for the computation of the system output
and another one for the weight adaptation (modification of the box memory). In
the following, it will be crucial to remember our operators represent 2 different
functions and flow of information moving in opposite directions. The first one
will allow to transform sensorial information in an output code while the second
one will act on the group memory in order to maintain a certain equilibrium
defined by the learning rule [9].

In this paper, we will not discuss the interest or defaults of particular learning
rules. Learning rules such as Least Mean Square algorithm (LMS - used for
conditioning) or Hebb rule variants or any competitive rule will be sufficient
for our demonstration since they are able to stabilize their associated weight
matrices in the case the system is in a simple behavioral attractor or “perception
state” (here simple means fixed point attractor).

Definition 1. The perception Per can be seen as a scalar function 1 repre-
senting an attraction basin of the agent behavior. It can be seen as a sensori-
motor invariant of the system (a kind of energy measure). Hence, the percep-

5 In previous papers, it was possible to write |y) = c(A1|CS1) + A2|CS:) +I|US)) but
many reviewers complained about the risk of misunderstanding the meaning of the
operator +.
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tion can only be defined for an active system and is dependent of the system
dynamical capabilities (kind of body, sensors and actuators). We will write:
Per(p) = —(Aclp) = — [ 5, Ac dr where |p) > describes the position of the
system in the considered enm’ronmemﬁ.

This corresponds to our intuition of the recognition as an attraction basin. We
will say a system is in a stable state of perception if it is able to maintain itself
in the associated attraction basin. Hence, learning to recognize an object (from
visual, tactile, auditory... informations) can be seen as learning to maintain the
system in a particular dynamical attraction basin [10]. More illustrations and
justifications of this definition can be found in [I1].

So when studying a control architecture, we will not need to take into ac-
count all the details of its implementation. We will have to focus on the global
architecture and the way its elements are able to shape the behavior (building
attractor basins).

3 Formal Simplification Rules

Now, the problem is to be able to simplify a CS architecture in another one (ei-
ther simpler to analyze and to understand the architecture or more complex to
provide more degrees of freedom to increase the architecture performances). Two
architectures will be considered as equivalent if they have the same behavioral
attractors (or perception state as defined previously). This means we cannot
study a control architecture alone. The interactions with the environment must
be taken into account. After the learning of a first behavior, the dynamics of the
interactions with the environment (the perception state) is supposed to be stabi-
lized. In the present formalism, two types of diagram simplifications will be con-
sidered. Simplifications of the first type can be performed at any time and leave
the fundamental properties of the system completely unchanged (these are very
restrictive simplification rules). Those of the second type only apply after learn-
ing stabilization (if learning is possible!). They allow strong simplifications but
the resulting system is no more completely equivalent to the departure system
(the new system will be less robust, less efficient and less precise for instance).
At the opposite, the same formalism can be used to complexify an architecture
in order to increase the efficiency of a given set of cognitive capabilities (increase
of the system elasticity, robustness, precision...).

We present now a first example of simplification rule based on the existence
of unconditional and reflex links. If we consider a linear chain of unconditional
links between competitive structures of the same size such as “Winner Take All”
(WTA), the intermediate competitive boxes are useless since they replicate on
their output their input information. Hence we can write for instance that if
we have: |b) = ¢(I]a)) and |d) = ¢(I]b)) then |d) = c¢(I|c(I|a))) which should be
equal to |d) = c(I|a)) because a cascade of competitions leads to an isomorphism

5 In naive cases, |p) can be expressed in Cartesian coordinates or in any pertinent
parameter space useful to describe more complex cases.
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between the different output vectors which become equivalent to each other after
the self organization of the different groups. So we can deduce the following rule
c(Ilc(.)) = c(.). Other static simplification rules can be built in the same way [9].
Other simplifications can be used to represent the effect of learning. Except for
robustness, these simplifications can be introduced to compare different control
architectures (or to build more complex controllers). We will suppose that the
system is in a stable state of perception or interaction with its environment. That
is to say, it exists a time period where the system remains almost unchanged
(internal modification must not have an effect on the system behavior). To be in
a stable state, the environment properties must be quite constant. We postulate
that for a given time interval, the learned configuration will be stable enough so
that the simplifications can be applied (but they remain only valid for this time
interval). Fig. Bl shows an intuitive representation of the evolution of a system
behavior through time. The system behavior can evolve to adapt itself to an

behaviors

| agent adapatationto | stable behavior time
changing env. i regular env.

Fig. 3. Intuitive representation of what is a stable behavior allowing formal simplifica-
tions of the system.

environment variation (or to the variation of an internal signal). In this case,
it moves from a stable state to an unstable state or transition phase. It is only
during the stable phases that the following simplifications can be considered
as valid. Hence, we have to highlight a “before learning state” and an “after
learning state” since some of the simplifications can be made at any time while
some others must necessarily be made in the “after learning state”.

Al A2
[x> ly> |z>
] ]
A
Ix> Iz>

Fig. 4. A cascade of competitive or unsupervised classification structures can be sim-
plified in a single competitive or classification box with a possible loss of performance
but without a change in the main properties of the architecture.
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A very simple example of such a simplification is the case of strict self or-
ganized learning group or competitive boxes (¢ operator) push-pully connected,
fig. @l We have |y) = c¢(A1|r)) and |z) = c(Az2]y)) with A; and A, the matrices
to learn the relevant input configurations. So |z) = c(Azlc(A1|x))) = c(Alx))
since it is always possible to create a bijection between the activation of a given
neuron in a first group and the activation of another neuron in a second group.
Both sets of neurons can be considered as equivalents.

A more interesting case corresponds to the conditioning learning. The con-
ditioning network (fig. [l a) should be equivalent “after learning” to the sim-
ple network shown fig. [5] b and can be translated by the following equation:
c(I|US), A|CS)) =~ c(A|CS)) where |US) represents the unconditional stimulus
and |C'S) the conditional stimulus. The simplification “before learning” considers
only the reflex pathway: ¢ (I|US), A|CS)) ~ c(I|US)) (functioning is equivalent in
a short time delay but there is no possible adaptation) whereas the other sim-
plification represents the equivalent NN in the “after learning” situation: not
equivalent if the environment changes too much and leads the agent to be in-
adapted.

| | after learning
[ ]

|us> ly> lus> Sy ly>

before. Ieérning A

IcS> 1 2) IcsS> 3)

Fig.5. Image 1 is the graphical representation of a conditioning learning |y) =
c(I|US), A|CS)). Image 2 is the graphical representation of the equivalent network
before learning and Image 3 after learning |y) = c(A|CS)).

We have shown in [9] that maximizing the dimensionality (rank) of the per-
ception matrix ), |Ac)(S| can be equivalent to the mean square error mini-
mization performed when trying to optimize the conditioning learning between
the action proposed by the conditional link and the action proposed by the un-
conditional link (where |Ac) represents the action vector (here |y)) and |S) the
sensorial input (here |C'S))). Hence, learning can be seen as an optimization
of the tensor representing the perception. In other words, we can say the pro-
posed simplification rules are relevant if the system is adapted to its environment
or if the system perceives its environment correctly according to the capabili-
ties of its own control architecture (learning capabilities). We can notice that
Per =% o (Ac|S) = tr(3_ 5 |Ac)(S|) while the “complexity” of the system behavior
can be estimated from rank((}, [Ac)(S]).
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4 Application to Social Interactions Learning

In this section, our goal is to show how our formalism can be applied to analyze
a very simple control architecture and justify some psychological models (see
[12] for a discussion on the importance of an emotional system in autonomous
agents). At the opposite to the classical pattern recognition approach, we will
show that an online dynamical action/perception approach between two inter-
acting systems has very important properties. The system we will consider is
composed of two identical agents (same architecture) interacting in a neutral
environment (see fig. [).

Signal S1

Perception (P1) Facial expression (F1)
Agent 1

Emotion E1

Signal S2

= Agent 2 -
Perception (P2) Emotion E2 Facial expression (F2)

Fig. 6. The bidirectional dynamical system we are studying. Both agents face each
other. Agent 1 is considered as a newborn and agent 2 as an adult mimicking the
newborn facial expressions. Both agents are driven by internal signals which can induce
the feeling of particular emotions.

One agent is defined as an adult with perfect emotion recognition capabilities
and also the perfect capability to express an intentional emotionfl. The second
agent will be considered as a newborn without any previous learning on the
social role of emotions. First, we will determine the conditions for a stable in-
teraction and show that in this case learning to associate the recognition of a
given facial expression with the agent own “emotions” is a behavioral attractor
of the global system. Our agents receive some visual signals (P; perception of
agent i). They can learn and recognize them ( |R;) activity). Hence, the percep-
tion of a face displaying a particular expression should trigger the activation of
a corresponding node in R;. This mechanism can use an unsupervised pattern
matching technics such as any winner take all mechanism (WTA, ART network,
Kohonen map...).

|Ri) = c(AulP;)) (1)

¢ represents a competitive mechanism allowing for instance to select a winner
among all the vector components. To simplify, this winning component is put to
1 and the other ones to 0 (any other non linear competition rule could be applied

7 The problem of the dynamical development of two identical agents in a more free
interaction game will be studied in a following paper.
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and should not change our reasoning). A;; represents the weights of the neurons
in the recognition group of the agent 7 allowing a direct pattern matching. Our
agents are also affected by the perception of their internal milieu (hunger, fear
etc.). We will call S; the internal signals linked to physiological inputs such as
fear, hunger... “Emotion” recognition F; depends on the internal milieu. The
recognition of a particular internal state will be called an emotional state FE;.
We suppose also F; depends on the visual recognition R; of the visual signal
P;. At last, the agents can express a motor command F; corresponding to a
facial expression. If one agent can act as an adult, it must have the ability to
“feel” the emotion recognized on someone else’s face (empathy). At least, one
connection between the visual recognition and the group of neuron representing
its emotional state must exist. In order to display emotional state, we must also
suppose there is a connection from the internal signals to the control of the facial
expression. The connection can be direct or through another group devoted to
the representation of emotions. For sake of homogeneity, we will consider that the
internal signal activates through an unconditional link the emotion recognition
group which activates through an unconditional connection the display of a facial
expression (hence it is equivalent to a direct activation of F; by S; - see [9] for
a formal analysis of this kind of properties). Hence, the sum of both flows of
information can be formalized as follow:

|E;) = c(I]S), Ais| R;)) (2)

At last, we can also suppose the teacher agent can display a facial expression
without “feeling” it (just by a mimicking behavior obtain form the recognition
of the other facial expression). The motor output of the teacher facial expression
then depends on both facial expression recognition and the will to express a
particular emotion:

|Fi) = c(I|Ey), Aio| Ri)) (3)

Fig. [ represents the network associated to the 3 previous equations describing
our candidate architecture. In a more realistic architecture, some intermediate
links allowing the inhibition of one or another pathway could be added but it
is out of the scope of the present paper, which aims at illustrating what can be
done with our formalism on a very simple example.

Au
P—#——R

1
A
A
|
F

I
S E

1

-

-

1

Fig. 7. Schematic representation of an agent that can display and recognize “emo-
tions” (notations see fig. [2). Arrows with one stroke represent “one to one” reflex con-
nections. Arrows with labels and 2 parallel strokes represent “one to all” modifiable
connections.
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Fig. 8. Schematic representation of the global network representing the interaction
between 2 identical emotional agents. The dashed links represent the connections from
the display of a facial expression to the other agent perception system (effect of the

environment).
s, Fu s F,
/S |
2 |
P A R, P A R, 3
o _________ /% ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

Fig. 9. Schematic representation of the simplified network representing the interaction
between 2 identical emotional agents (modification of fig. )

4.1 Condition for Learning Stability

First, we can study the minimal conditions allowing the building of a global be-
havioral attractor (learning to imitate and to understand facial expressions). Fig.
Blrepresents the complete system with both agents in interaction. It is considered
as a virtual net that can be studied in the same way than an isolated architecture
thus allowing to deal at the same time with the agent “intelligence” and with the
effects of the embodiment and/or the dynamics of the action/perception loops.

The following simplifications apply before learning and concern only the un-
conditional links (see in the previous section the simplification of a conditioning
structure before learning). We simply consider the activation of S can induce
a reflex activation of a stereotyped facial expression F' before (and after) the
learning of the correct set of conditioning. The resulting network is shown fig.

Next, the linear chains of “one to many” modifiable connections and
their associated competitive learning structures can also be simplified since
c(Alc(.) = c(.). We finally obtain the network shown fig. [0 a).

S{Lﬁ%ﬁ_ S——F

% 7 ? a) miror ~ b)

Fig. 10. a) Final simplification of the network representing the interaction between 2
identical emotional agents (modification of fig. @)). b) Minimal architecture allowing
the agent to learn “internal state”-"facial expression” associations.
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It is much simpler on fig. [I0 to see the condition of the learning stability.
Since, the chosen simplifications allow to obtain a virtual network with learnable
bidirectional connections between F} and Fb, a condition for the learning stabil-
ity is that these connection weights remain stable. If S; and S5 are independent,
learning cannot be stable since S7 and Sy are connected through unconditional
links to F} and F5 respectively. The only way to stabilize learning is to suppose
S1 and Ss are congruent. Otherwise a lot of “energy” is lost to adapt continu-
ously the connections between F; and Fy (see [9] for more details). Because, the
agent representing the baby must not be explicitly supervised, a simple solution
is to consider the agent representing the parent is nothing more than a mirrord.
We obtain the network shown in fig. [0l b) where the architecture allows the
system to learn the “internal state”-"facial expression” associations. Hence, we
show that from our initial control architecture, learning is only possible if the
teacher/parent agent imitates the baby agent. The roles are switched according
to the classical point of view of Al and learning theory. This shows how taking
account the dynamics of interactions between two agents can change our way of
thinking learning and more generally cognition problems.

4.2 Learning the Emotional Value of Facial Expressions

These first simplifications bring us to the conclusion that learning stabilization
is possible if the teacher/parent agent acts as an imitator of the baby agent.
Now, we will suppose these conditions are respected. From the initial equations
of the system, we will derive another set of simplifications in order to prove
the beginner (or naive) agent can learn to associate the visual facial expression
displayed by the teacher agent to the correct emotional state. We suppose the
agent 1 perceptive input P; is the result of a linear projection of the facial
expression (output) of the agent 2 and vice versa. We will write |P1) = B |F2)
and P2 = B2|F1> I‘IGHCG7 ‘R1> = C(A11|P1>) = C(All.Bl‘FQ» = C(A/11|F2>) (Wlth
A1 = A11.B1). We can then replace in this new expression of Ry, |F3) by the
result of the computation of the second agent (using eq. Bl). We obtain:

|R1) = c(Al]c(I|E2), Agz|Ra)))
= c(Aly|c(I|E2), Azs|c (A21]P2))))

On the other side, we have |Py) = Bs|F}) so:

|R1) = c (Al |c(I|Ea), Ags|c(Az - Ba|F1))))
= c(Ajy|c(I|E2), Ass|c (A5 ]F1)))) (4)

8 Obviously, another possible solution is that the second agent tries to deceive the
first agent. If the second agent displays an “unhappy face” every time the first agent
displays an “happy face” and vice versa an incorrect learning is possible. Fortunately,
the probability of such a learning is very low if the first agent interacts with several
independent agents (no conspiracy!). Yet, we can predict that a baby interacting
with a depressed mother (low probability of “happy face”) will have some difficulties
to create an unbiased repertory for the recognition of other’s emotional states.
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A}, is defined as the matrix resulting from As; - Ba. The equation Ml can be
represented by the virtuald network shown fig. [T Intuitively, the network means
the visual recognition in the first agent depends on the emotional state of the
second agent and should also be a function of the facial expression of agent 1.

Fig. 11. Virtual net associated to eq. @

All the preceding simplifications could be made at any time (here, it is before
learning). The following simplification can be done only after learning (and need
the learning stability condition i.e. the second agent is a mirror of the first
one). If the obtention of learning is possible (the error between F; and Es can
be minimized in the mean square sense), conditioning learning in eq. @ should
result in:

I|Ey) = Agz.c (A5 F1)) (5)

if both architectures are identical, since there is no influence of learning on this
simplification, we obtain by symmetry:

|E1) ~ Avz.c (A} |F2)) (6)
Then, we can simplify eq.

|[R1) ~ (Al |e (Azs|c (A5, F1))))
~ ¢ (Algs| 1)) (7)

(we also have |R:1) =~ c¢(Al,|E2)) but we won’t use it.) Eq. [[ can be interpreted
as the fact the activity of agent 1 visual face recognition is a function of its own
facial expression. If we replace the value of F} obtained from eq.[3 in eq. [{] we
obtain:

|R1) ~ ¢ (Algg|e (I|Er), Ars|Ry))) (8)

Here again I|E7) is the reflex link and A;3|Ry) the conditional information. The
conditional link can learn to provide the same results as the reflex link. If F4
can be associated to Ry then we obtain:

9 This network is virtual since it mixes together parts of networks belonging to two
different agents.
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|[R1) ~ c(Algslc (1| Er)))
and |Ry) & ¢ (Alg3] E1)) (9)

This result shows the activity of the face recognition system is a direct function
of the agent emotional state (R; can be deduce from E7). In conjunction with
the relation linking Fy to Ry (eq. B) we can deduce the agent 1 (baby) has
learned to associate the visual recognition of the tested facial expressions to its
own internal feeling (F7). The agent has learned how to connect the felt but
unseen movements of self with the seen but unfelt movements of the other. It
could be generalized to other movements since we showed in [I3|I4]15] that a
simple sensori-motor system is sufficient to trigger low level imitations.

5 Discussion and Perspectives

In this paper, we have applied a formalism proposed in [9] to simplify an “intelli-
gent” system and to analyze some of its properties. We have shown a very simple
architecture can learn the bidirectional association between an internal “emo-
tion” and its associated facial expression. To demonstrate this feature, we have
proved first that learning is only possible if one of the agents acts as a mirror of
another. We have proposed a theoretical model that can be used as a tool not
only to understand artificial emotional brains but also natural emotional brains.
Let us consider a newborn. She expresses internal states of pleasure, discomfort,
disgust, etc, but she is not aware of what she expresses. Within our theoretical
framework, we can expect that she will learn main associations between what
she expresses and what she experiences through her partners’ mirroring of her
own expressions. Seeing what she feels will allow the infant to associate her inter-
nal state with an external signal (i.e. her facial expression mirrored by someone
else). Empirical studies of mother-infant communication support this view. For
instance, two-month-old infants facing a non contingent televised mother who
mirrors their facial expressions with a delay become wary, show discomfort and
stop imitating the mother’s facial expressions (see [L6]). The primary need of
mirroring is also demonstrated by the progressive disappearance of facial ex-
pressions in infants born blind. Another prospective benefit of the model is to
give a simple developmental explanation of how facial expressions come to in-
form the growing infant about external events through the facial reading of what
those events trigger in others [17]. Finally the model leads to suggest a main dis-
tinction between two processes of emotional matching: matching a facial emotion
without sharing the emotion expressed: in this case there is a decoupling (see
[18]) between what is felt and what is shown, thus it is pure imitation, and
matching a facial emotion with emotional sharing, that is to say feeling what
the other expresses through the process of mirroring, a definition of empathy
(see [19]). More complex architectures could be built on the basis of the studied
model. For instance, adding feedback connections from the proprioceptive signal
linked to the control of the facial expressions onto the recognition of an internal
emotional state would allow the agent to “feel” a little bit more happy when he
is smiling. Fig. [2 shows what could be such an architecture.
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Visual _ Visual
Perception category <-..
/ ‘V
Internal_______internal - Motor action
Signal Emotional State (facial expression)

proprioception
\ A

. Motor
"> category =~

Fig. 12. Schematic representation of an agent that can show and recognize emotional
states with feedbacks connections from action/proprioception to the different internal
categorization structures.

In our lab., the formalism developed in this paper is used as a programming
language allowing to describe architectures for visual object recognition, visual
navigation, planning, visuo-motor control of an arm and imitation games... Yet,
even if the size of our networks becomes more and more important, their intrinsic
complexity remains low since it was our goal to prove complex dynamical behav-
iors could emerge from relatively simple architectures. At the opposite, Sporns et
al. [20] study complex networks in terms of their structure and dynamics. They
show highly complex networks have distinct structural characteristics such as
clustered connectivity and short wiring length similar to those of large-scale
networks of the cerebral cortex. Hence, future works will have to answer the
following questions: Which are the minimal structures that cannot be simplified
(or which intrinsic property is lost when an important simplification is made)?
Which kind of really different operators have to be considered? And at a higher
level, we will have also to understand how to manage different learning time
constants and how to represent the body/controller codevelopment.

To answer these questions, it becomes necessary to test our formalism on
other architectures and other problems to analyze precisely its limitations
and to propose a more powerful framework. Another problem is that the
demonstration proposed in this paper was based on the fact it was possible
to isolate fixed point dynamics and to study one of them isolatedly. For more
complex dynamical systems, we believe the same approach could be used (i.e.
isolate the different dynamical regime and propose simplifications for each of
them). Nevertheless, we believe the proposed approach could be directly applied
to problems of the same kind of complexity level such as the problem of joint
attention learning (see for instance [21] where a robot controller based on a
principle close to the one developed in our own architecture is proposed).

To sum up, we have shown it is possible to develop theoretical tools taking
into account the interactions with the environment in order to compare and
analyze different control architectures. In this context, the more a system
is embodied, the less it need explicit learning since it is well adapted to its
function: it relies on the physical plasticity of its physical architecture (see
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for instance how our mechanical anatomy simplifies the wide variety of tasks
we have to solve). The need for learning can be seen as the impossibility of a
perfect embodiment according to a given ecological niche (need of a physical
compromise between the requirement of the different behaviors). Hence, in an
algebra of embodied cognitive systems, we will have to distinguish between 3
levels of cognition: an infra level of cognition linked to the physical properties
of the body, the individual level of cognition (the control architecture for one
isolated agent) and the social level dealing with the social interactions between
agents. At each level, the measure of the system elasticity or adaptation
capability might be performed to characterize the embodiment of the system
(see [9] for a tool to compare the complexity of different control architectures in
term of an energy measure). In conclusion, we believe the difficulty of a formal
analysis of cognitive systems is much more a problem of choosing the correct
postulates and axioms than the lack of mathematical tools to deal with the
intrinsic complexity of the existing systems.

Acknowledgements. This work is supported by the CNRS “ACI Computa-
tional Neurosciences” and “ACI Time and Brain” and CNRS team project on
“imitation in robotics and development”.
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Abstract. This chapter presents a generic internal reward system that
drives an agent to increase the complexity of its behavior. This reward
system does not reinforce a predefined task. Its purpose is to drive the
agent to progress in learning given its embodiment and the environment
in which it is placed. The dynamics created by such a system are studied
first in a simple environment and then in the context of active vision.

1 Introduction

Models of natural or artificial autonomous agents usually imply the existence
of primary motivational principles that govern the behavior of the agent. Bi-
ologists typically describe most of the processes of metabolical regulations as
the results of homeostatic mechanisms maintaining internal “variables” such as
hunger, thirst or temperature into desirable limits. Behaviorists have argued that
behavior was driven by the search for a set of potential rewards corresponding to
primary and conditioned reinforcers [1]. This kind of model has lead to reinforce-
ment learning architectures in which a robot learns to behave in order to receive
artificial “rewards”[2]. In return, recent results seem to suggest a convergence
between the reinforcement learning theory and neurophysiological data from the
midbrain dopamine system in particular [3|415].

Rewards have traditionally been viewed as external stimulations provided
by the environment or by an experimenter. This chapter discusses the opportu-
nity of considering the existence of an internal reward system that would act
as a driving force for learning: a kind of “epistemic hunger”. Several authors
have argued that human behavior is probably driven by a principle of this sort
(e.g. Korand Lorenz’s “neophily” [6], Csikszentmihalyi’s “flow experiences” [7]).
But very few precise models exist to explain the mechanisms underlying such a
curiosity principle.

In our vision, curiosity is tightly linked with prediction capabilities and learn-
ing experiences [§]. “Learning situations” occur when an agent encounters a sit-
uation which is not yet entirely predictable based on its current capabilities but
learnable using its algorithms for adaptation. In models which view homeostasis
as a major drive for living creatures, such kind of situations may be seen as
perturbations [9]. If the goal of the agent is to constantly try to minimize its

F. lida et al. (Eds.): Embodied Artificial Intelligence, LNAI 3139, pp. 259-270} 2004.
(© Springer-Verlag Berlin Heidelberg 2004
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error in prediction, learning is simply a way to reach again a form of equilibrium
state (e.g. [10]). Taking an opposite point of view, several authors have suggested
that in order to learn efficiently agents should focus on “novel”, “surprising” or
“unexpected” situations. This would mean that a “curious” agent should focus
on situations for which it does not yet have adequate prediction capabilities (e.g
[11] in field of developmental robotics or [12] in the field of “active learning” ).

The view presented in this chapter is different, but in the line of Schmid-
huber’s theoretical machine learning work [13]. Curiosity is defined neither as
a pressure to minimize errors in prediction, nor as a tendency to focus on the
most ”surprising” situations, but on the contrary as a drive that pushes the agent
to lose interest in both predictable and unpredictable areas, to concentrate on
situations that maximize learning progress.

The next section presents an engine that can generate behaviors based on this
reward principle. As the reward system is generic, this engine can be associated
with any input-output device. However the resulting behavior highly depends on
the embodiment of the device, that is on the physical structure of the device and
on the particular implementation of the prediction systems used by the engine.
In order to understand the learning dynamics created by this reward system,
this chapter focuses first on a simple embodiment. Experiments with a more
complex active vision system are then described.

2 A Generic Engine

2.1 Technical Description

Input, Output, Internal rewards. An agent can be viewed as a plant con-
sisting of an input-output device and an engine controlling it. At any time ¢,
the engine receives a vector S(t) of input signals (either internal or external to
the agent) and can send a vector M(t) of control signals corresponding to its
actions on the environment or on internal parameters. The set of internal reward
received at time ¢ is contained in a vector R(t). The purpose of the engine is
to maximize the amount of rewards received in a given time frame (possibly
infinite) [

The complete situation (sensory-motor and rewards) is summarized in a vec-
tor SM R(t). The behavior of the engine consists in determining M (t) based on
S(t) and on previous sensory-motor-reward situations SMR(t — 1), SMR(t —
2), ... Given the constraints provided by its embodiment and the environment in
which it is placed, the engine develops in an unsupervised manner 2

! In this paper we only consider the case of a reward vector of dimension 1, but we
describe the engine in its general form which can deal with more than one reward
function.

2 It is to be understood that, in the present paper, when the expression “sensory-
motor” is used the word “motor” does not necessarily entail physical motion. The
term “motor” refers more generally to any control signal having a potential effect
either on the environment of the agent or on the agent itself: control of physical
actuators, activation of sensory devices, change on internal parameters.
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An important point is that the engine receives inputs and produces control
commands without any a priori information about what they “externally” mean.

Predictors. Predictors form the most important part of the engine. They are
responsible to anticipate future sensory-motor evolutions and expected rewards.
Their function can be implemented as a single predictor IT that tries to predict
future situations.

I(SMR(t)) — SMR(t + 1) (1)

However, in practice, it is often more efficient to implement this global predic-
tor through three specialized prediction devices: Il,,, I, II,.. The three devices
take the current situation SM R(t) as an input and try to predict the future
motor situation M (¢t + 1), the future sensory situation S(t + 1) and the future
state of the reward vector R(t+1), respectively. At each time step, once SM R(t)
is defined, the three devices learn in order to increase their prediction accuracy.
Each predictor adapts differently depending on its implementation. The predic-
tion devices can be implemented in different manners, for instance:

— A recurrent Elman neural network with a hidden layer / context layer. Be-
cause this network is recurrent it can predict its output based on the value
of the sensory-motor vectors several time steps before ¢ [14].

A prototype-based prediction system that learns prototypic transitions and
extrapolates the result for unknown regions

— A system using Hidden Markov Models [15].

A mixture of experts like the one described in [16] and [17]

The performances of the prediction devices are crucial for the system, but the
architecture of the engine does not assume anything about the kind of devices
used. The choice of a particular technique and its implementation are considered
to be part of the embodiment of the device.

Reward system. At each time step t, the reward system computes the current
values of R(t) based on internal computation on the architecture. The system
we describe below is based on “maximizing learning progress”. At any time t,
the system can evaluate the current error for predicting sensory effect of a given
command. It is the distance between the predicted sensory vector and its actual
values.

II;(SMR(t — 1)) — S'(t), e(t) = distance(S’(t), S(t)) (2)

3 It takes the form of a set of vectors associating a static sensory-motor context
SMR(t — 1) with the predicted vector (M (t),S(¢) or R(t)). New prototypes are
regularly learned in order to cover most of the sensory-motor-reward space. Predic-
tions are made by combining the results of the k closest prototypes. k is typically
taken as size(SMR(t)) +1 . This prediction system is faster and more adaptive than
the Elman network, but may prove less efficient for complex sensory-motor-reward
trajectories.
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We define the “learning progress” p(t) as the reduction of the error e(t). In the
case on an increase of e(t), progress is zero.
e(t—1)—e(t) : e(t)<e(t—-1
p(t) = (t=1) —e(?) | (t) <e(t—1) 3)
0 :oe(t) >e(t—1)

In the case when “learning progress” is the only variable to maximize, the
vector R(t) is of dimension 1 :

R(t) = {p(t)} (4)

Maximizing learning progress forces the agent to move away from predictable
trajectories in order to receive rewards when returning to predicted ones. This is
very different from minimizing or maximizing the error e(t). Minimizing the error
involves carrying out the actions whose effects are the most easy to predict. This
leads to the specialization of the agent into a very small sensory-motor domain,
that it will try to master perfectly. With such a reward system, the diversity
of the behavior of the agent tends to be rapidly reduced. Maximizing the error
involves carrying out the actions whose effects are the most difficult to predict.
This can lead to good results in some cases. But in the case where part of the
sensory-motor space is very difficult to predict, this strategy is likely to result
in destructive learning as the agent will not go back to predictable trajectories.
Experiments with these different kind of reward functions are discussed in [§].

Action selection. The action selection module chooses the output commands
that are expected to lead to the maximum rewards between t and t+T. Several
techniques taken from the reinforcement learning literature can be used to solve
these kind of problems|[2]. In our system, the process can be separated into four
phases:

1. Generation : The module constructs a set of possible commands {mi}. For
some applications this phase can be trivial, but more elaborate computations
may be required when dealing with complex actuators. As an example of a
simple case: if the current value of an actuator control signal, myg, is 0.7
then the controller may randomly shift the current value so as to produce
candidate values such as 0.55, 0.67, 0.8, 0.75, for my.

2. Anticipation : With the help of the predictors, by using the prediction de-
vices in a recurrent manner, the module simulates the possible evolution
{SMR,,;} over T time steps. The module combines the result of both I,
and Il to predict future sensory-motor situations and uses II,. to predict
the evolution of the reward vector R(t).

3. Evaluation : For each evolution {SMR,,;} an expected reward ,,; is com-
puted as the sum of all the future expected rewards.

t+T



Maximizing Learning Progress: An Internal Reward System for Development 263

4. Selection : The motor command {mi} corresponding to the highest expected
reward is chosen.

The action selection module monitors how well the system is behaving by
computing the average reward < ar(t) > over K timesteps. If < ar(t) > is below
a given threshold 7 the system acts randomly instead of using the anticipation
process. This allows the discovery of opportunities for learning by chance and
then to exploit them.

3 The Light Switching System: A Very Simple
Embodiment

In order to better understand how the architecture works, this section describes
first the behavior of the system for a very simple embodiment. Let’s assume
that the device is equipped with two sensors. The first one, pos(t) is its position
between 0 and 1. The second light(t) can only take two values 0 and 1 and
corresponds to the presence or absence of a light in the environment. This light is
switched on when the agent occupies a position between 0.89 and 0.91, otherwise
it is zero. The system is equipped with a single actuator nextpos corresponding
to the next position the system should go to. It tries to maximizes its “learning
progress” p(t). A step by step evolution of the system in this simple situation is
described in a detailed manner in the appendix.

1I,, II,,, II, are three prototype-based predictors with a maximum capacity
of 500 prototypes. For these simulations 7' = 2, K = 1. To understand the
dynamics produced by the engine more easily, we set = 0. This means that
the system always attempts to use the action selection mechanism to maximize
rewards.

Measures. In order to evaluate the behavioral effect of the action selection
mechanism based on maximizing learning progress, we need to systematically
compare the simulation results with results obtained for an agent that learns
choosing random actions. Despite its simplicity, the “random” action strategy
can be efficient for learning about unknown environments and discover sensory-
motor contingencies.

The first question is whether the system manages to reach its goal : maximiz-
ing learning progress. We define the cumulative progress P(t) as the integration
over time of p(t).

P(t) = Z p(t) (6)

To evaluate the performance of the action selection mechanism, we define the
comparative progress ratio Cp(t) as :

PrraxprocrESS(t)
Cp(t) = 7
r(®) Pranponm(t) ™
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In the context of this environment, the second question is whether the action
selection mechanism based on progress leads to a different behavior towards the
light. We define the number of times the light has been switch on as :

t
L(t) =) _ light(t) (8)
j=0
To evaluate the difference in the behavior, we define the comparative ratio :
L t
Cult) = MaxPROGRESS (1) ©)
Lranpon(t)

Simulation results. Figure[llshows the evolution of C'p(t) and C,(t) for 10 000
time steps. In the beginning of the evolution, the random strategy outperforms
the action selection mechanism. In a situation where very few learning situations
are present, choosing actions based on anticipated progress is a worse strategy
than choosing actions at random.

e P o

i e R

1 1001 2001 3001 4001 5001 6001 7001 8001 9001

Fig. 1. Evolution of the comparative progress Cp(t) and comparative light ratio Cr (¢)
for 10 000 time steps

At t = 579, the agent using the action selection mechanism switches the light
on by chance. From that moment, its starts progressing rapidly. The strategy
outperforms the random one around ¢ = 1000 and will continue since then.

The CJ(t) curves follows a similar evolution as Cp(t). Random action choices
lead first to more situations where the light is on. But as soon as the possibility
to switch on the light is “discovered” by chance by the agent, the action selection
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mechanism exploits that source of learning opportunities by switching the light
on much more often than in the random case.

Such behavior is not complex in itself. It would have been easy to define a
system to reward the agent when the light is switched on and off. The external
behavior of such an agent may have been similar to the one of this experiment.
The difference is that our agent had no a priori bias towards that particular
stimulus. In this case, the light switching behavior is an “emergent property”
resulting of a generic internal reward principle.

We can define v, the point of transition where Cp(t) becomes superior to 1.
Once 7 is reached, the action selection strategy outperforms the random strategy.
In this simulation = corresponds also to the transition when the agent starts
switching on the light more often than by random moves.

Figure [ shows a dramatic increase of Cp(t) just after the “discovery of
the light”. But after v, Cp(t) reaches a stationary regime where the progress
performances are not very different from the one obtained with the random
strategy. A similar pattern is observed with the light ratio C(t). The light is
maximally switched on just after 7. After this initial drive for learning how to
switch the light on or off, the system reaches a kind of habituation phase. There
are no more opportunities for learning. Progress is not zero because there are still
some residual errors in prediction to be improved. But the learning progresses
as fast as with the random strategy.

4 Embodiment in an Active Vision System

The embodiment we present in this section shares some similarity with an active
vision system described by Marocco and Floreano [I8/I9]. But the latter uses an
evolutionary robotics paradigm: population of robots are evolved and the best
individuals are selected according to a predefined fitness function. We use this
embodiment in a developmental perspective.

The system is equipped with a squared retina using RxR perceptual cells. It
can move this retina in an image and zoom in and out. Based on the zooming
factor, the retina averages the color of the image in order to produce a single
value for each cell of the retina. With such a system, it is possible to rapidly
scan the patterns present in the overall image and zoom in to perceive some
details more accurately. The system has to learn how to ”act” on the image by
moving and zooming the retina in order to get the higher reward as defined by
its reward system.

More precisely, for a given image snapshot I(t), the sensory vector S(t) con-
tains the renormalized grayscale value of the Rz R pixels of the retina, its current
position (X (¢),Y (¢t)) and zoom factor Z(t). The motor vector M (t) contains the
values for the three possible actions the device can perform: changing the X and
Y values and the zooming factor Z.

4 Tt is not sure that the global position information X (t), Y (¢), Z(t) are necessary for
the system to work as theoretically they can be deduced from the temporal integra-
tion of Dx (t), Dy (t), Dz(t). However, in practice, it was difficult for the system to
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Pix171(t)
Pim2,1(t)
Dx (t)
S(t) = |Pixzr,r(t)|, M(t) = |Dy(t) (10)
X(t) Dz(t)
Y (t)
Z(t)

The system is presented with a white image where a grey circle is drawn in
the down right corner (Figure[J). This situation shares a lot of similarities with
the light switching environment previously studied: the environment is uniform
except in a small zone and at a given time t, the agent only perceives a small
part of it. But the sensory-motor know-how to be developed to master the retina
is much more complex.

Fig. 2. Image used for the active vision experiment

The system is equipped with a 5x5 retina, so S(t) is of size 5543 = 28 and
SMR(t) of size 284+ 3+ 1 = 32. As in the previous experiments, I, I1,,, II, are
three prototype-based predictors with a maximum capacity of 500 prototypes,
T = 2 and K = 1. Three simulations where conducted : one with n; = 0.01,
one with 72 = 0 and one with actions chosen randomly. Cp;(t) and Cpa(t) are
defined as previously. By analogy with the light example, we can define [(t) which
has value 1 when the center of retina is inside the gray circle and 0 otherwise.
Cr1(t) and Cpra(t) defined as previously measure the relative focus on that part
of the image in comparison with a retina governed by random commands.

Figure Bl shows the evolution of Cpy(t), Cr1(t), Cpa(t) and Cra(t). With
n1 = 0.01, the system discovers rapidly that to focus on the grey circle lead to
more learning progress. Cpi1(t) and Cpi(t) show similar features than the ones
observed for the light switching problem : (1) the action selection mechanism
outperforms clearly the random strategy, (2) once the “interesting” part of the
environment is discovered the agent focuses mainly on it for a while, (3) even-
tually an habituation phase is observed. However with 772 = 0, the performances
are worse than random. A study of the trajectory shows that the agent focuses
on corner instead of focusing on the grey circle. As the sensory-motor-reward

discover how the “borders” of the image constrained the retina’s movements, without
using this positional information.
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space is larger then in the previous system we are confronted with a classical
exploration/exploitation trade-off. An optimal strategy may consist in an adap-
tive system evaluating Cp(t), increasing n when Cp(t) < 1, reducing it when
Cp(t) > 1.

1 1001 2001 3001 4001 5001 6001 7001 8001 S001

Fig. 3. Evolution of the comparative progress Cp1(t)(n = 0.01) and Cp2(¢)(n = 0)and
comparative focus on the grey circle Cr1(t)(n = 0.01) and Cr2(¢)(n = 0.0)for 10 000
time steps

5 Conclusions

An agent motivated by maximizing learning progress constructs its behavior in
order to go from unpredictable situations to predictable ones. Instead of focusing
on situations that it predicts well (minimizing prediction error) or on situations
it does not predict at all (maximizing prediction error) it focuses on the frontier
that separates mastered know-how from unmastered know-how. This strategy
enables the development of more complex behaviors in a given environment. In
the two experiments described in this chapter, the agent discovers a feature of its
environment that is only visible when specific actions are performed. As soon as
the agent discovers this feature, it tries to learn about the sensory effects of its
actions in this context. Once its learning progress ceases to increase, the agent
stops focusing on this sensory-motor trajectory as it is now part of well predicted
situations. This focusing behavior can be seen as a novel behavior mastered by
the agent.

One major challenge for developmental robotics is to build a single architec-
ture that would enable a robot to develop novel behaviors of increasing com-
plexity. Can the same mechanisms enable a robot to autonomously learn how
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to avoid obstacles, discover how to use objects or structure its interactions with
other robots? We believe reward systems like the one presented in this paper can
play a key role to build robots capable of open-ended development. However, the
reward system in itself is not sufficient. The development of complex behaviors
results from the interplay between generic motivational principles, particular em-
bodiment (including a particular physical structure, perceptual and motor ap-
paratus and learning techniques) and environmental dynamics (see for instance
the experiments discussed in [20] in this volume). For these reasons, further re-
search in that direction should focus on exploring how generic principles such as
the one presented in this chapter can be used in experiments with grounded and
situated robotic agents.

Acknowledgements. The authors would like to thank Luc Steels and the
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Appendix

This appendix describes a step by step evolution of the system for the light
switching problem. In this example the parameter 7 is set to 0.01. Let’s assume
that the system has been active for ¢ time steps and that during that period the
light stayed at value 0. For the sake of simplicity, we will make the unrealistic
assumption that the predictors learn rapidly and ”perfectly” based on the situ-
ations they encountered. So we will assume that the predictors have learned to
predict that pos(t) = nextpos(t — 1) and that light(t) = 0.

Time t. At time t the situation is the following.

pOS(tz ): 0.4 pos(t 2
nextpos(t) = 0.2 ,SMR(t) =
pH) =0 p(t

e(t—1)=0,SMR(t—1) =

The ”perfect” predictor for sensory information, I, gave the following pre-
dictions:

position(t) = 0.2

I (SME( = 1) =\ chi) = 0

(12)
Soe(t)=0and p(t) =e(t—1) —e(t) =0.

The role of the action selection module is to determine nextposition(t). The
average progress, close to zero, is currently inferior to 1. Acting randomly, the
system chooses nextposition(t) = 0.9. The vector SM R(t) is now completed.
The three predictors can learn by comparing SM R(t) with the values predicted
based on SMR(t — 1).
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Time t+1. As the agent moved to 0.9, the light was switched on. Consequently,
the situation at time t+1 is the following, and I1; could not predict that evolu-
tion.

pos(t+1) =0.9
light(t+1) = 1
nextpos(t + 1) =7
p(t+1) ="

pos(t+1)=0.9

SMR(t+1) = light(t +1) = 0

I (SMR(t)) — (13)

So e(t+ 1) = (0+1)/2 = 0.5 and as progress is negative p(t + 1) = 0. Next
action is random : nextpos(t + 1) = 0.7. Predictors learn.

Time t+2. Situation at ¢ + 2 is the following

pos(t+2) = 0.7
light(t +2) =0
nextpos(t + 2) =7
p(t+2) =7

SMR(t+2) = (14)

Let’s assume that the predictor has predicted correctly that the light will be
switched off after that move.

pos(t +2) =0.7

I, (SMR(t +1)) — light(t +2) =0

(15)

Soe(t+2) =0 and p(t+2) = 0.5—0 = 0.5 . Because p(t+2) > n, next action
will be chosen through anticipation. The system creates a set of possible values
for nextpos and tries to predict their effects in terms of rewards. If the system
only looks one step ahead no reward can be anticipated. But if the system looks
at least two steps ahead, it can anticipate that choosing nextpos near 0.9 will
lead to a situation similar to the one experienced at time ¢ 4+ 1. Using predictor
II,,, to simulate what it would do next in such a situation and II, to evaluate
the associated expected reward a total anticipation of the situation at t+3 is
possible.

pos(t+2) =0.7 pos(t+ 3) = 0.91(11)
( light(t+2) =0 ) light(t + 3) = 1(I1,)
nextpos(t + 2) = 0.91(¢ried) nextpos(t + 3) = 0.7(I )
p(t+2) =05 p(t +3) = 0(I1,.)

(16)

The system can then use I, to anticipate the expected reward at t + 4
(e.g. p(t+4) = 0.5). Based on this anticipation the system will decide to move
to 0.91 in order to experience again the transition that lead to an increase of
p(t). This example illustrates one possible way for the system to optimize the
learning progress p(t). The variable p(t) is positive when the system moves from
an unpredicted situation to a predictable one. This means that the system is
rewarded when it “returns” to known situations. But to be “returned”, the
system must first leave the situations it anticipates well.
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Abstract. The paper describes a road-map towards intentional beha-
vior in artificial systems. We catch the developmental path in two di-
mensions, a social and an intentional dimension. Starting out with a
babbling phase, development continues over an exploratory phase with-
out social interactions and a phase in which action-level imitation is
used. The pinnacle of development is the intentional imitation of goals.
An experiment, together with preliminary results, is presented for each
developmental phase.

1 Introduction

In recent years, a lot of attention has gone to the construction of intentional
agents, i.e. agents that purposefully interact with their environment and with
other agents, e.g. [1]. The field has witnessed several ad hoc solutions towards
implementing intention in agents. Especially in the field of software agents sev-
eral formalisms have been defined to enable agents to maintain beliefs about
actions and their possible outcomes [2]. However, little attention has been paid
to the developmental path that agents should take before arriving at full-fledged
intentional behavior, and the importance of embodiment and grounding in this
all.

In this paper we outline a possible developmental path for mastering the
difficult task of intentional imitation. We discern four steps: motor babbling,
imitation of gestures, individual exploration and intentional exploration [3]. We
argue that embodiment is an important factor in all four steps. To substantiate
the theory, we present computer simulations and results for the first two steps
and outline possible computer simulations for the last two.

2 Social and Intentional Dimensions of Behavioral
Development

When studying behavioral development and learning, it is easy to be baffled by
the complexity of the subject. Many different types of behavior are encountered.

F. lida et al. (Eds.): Embodied Artificial Intelligence, LNAI 3139, pp. 271-277} 2004.
(© Springer-Verlag Berlin Heidelberg 2004
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One encounters such apparently disparate phenomena as motor babbling, mime-
sis (when an individual mimics another individual without paying attention to
the goal of the behavior), exploration of the world and imitation of object use.
All of these phenomena are associated with different stages of development, but
at the same time many of them occur in parallel. Although at first sight these
phenomena may appear to have little in common, we argue that in fact they can
be analyzed in terms of two developmental parameters: a social dimension and
an intentional dimension.

A
3
= exploration of imitation of
£ | object affordances use of objects
]
c
2
=
s
£
. imitation of
= babbling
5 gestures
)
(] >
o 1 |
individual . . social
interaction

Fig. 1. Social and intentional dimensions of behavioral development.

The social and intentional dimensions can be imagined as forming an abstract
two-dimensional space (see figure[ll). At the zero ends of both dimensions there is
behavior without intention and without social content. As one moves away from
zero, behavior becomes more intentional and more social, respectively. Although
it is clear that this proposed space is continuous, in the sense that behavior can
be more or less social or intentional, for the sake of argument it is useful to define
four corners in this space. We argue that the above-mentioned four examples of
developmental behavior correspond to the four corners of this space. Babbling
and motor babbling fall at the zero-point. These behaviors are neither social
nor intentional. They are used for exploring the possible space of movements
and articulations and possibly for finding a mapping between visual perception,
proprioception and action. Imitation of gestures is social in that it requires at
least two agents and in that it requires the imitating agent to map the other
agent’s actions onto its own. However, by definition, imitation of gestures is not
concerned with the intent of the other agent’s actions. Agents only mimic each
other, this is why this type of imitation is also called mimesis [4]. Exploration of
the world, on the other hand is intentional, in that the agent doing the explo-
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ration wants to figure out how its actions change the state of the world. As the
agent is perfectly able to do this on its own, such behavior is not social. During
the exploration phase in which affordances of objects are learned, the environ-
ment is of crucial importance. It provides situational constraints to which every
action is bound [5]. The agent now does not only learn the properties of its own
effectors, it learns the effect of its actions on the environment. In doing this,
it acquires a representation of the physical properties of the environment. Fi-
nally, the combination of intentional and social behavior can result in imitation
of object use, where by definition the agent’s aim is to copy the other agent’s
intentions. Other social and intentional behaviors, such as constructing a theory
of mind or trying to manipulate another agent are also possible. The success of
an imitative attempt can be measured by observing the behavior of the robots.
Measuring the success in constructing a theory of mind for instance requires
inspection of the agents’ internal memories. Imitation on robots was therefore
heavily investigated, although no systems capable of intentional imitation were
built.

3 Embodiment and Behavioral Development

Development in animals and humans is for a large part defined by constraints and
changes in the body and brain structures and therefore embodiment is obviously
important when studying development.

The importance of development for embodied systems is familiar to all re-
searchers in robotics. It is almost always impossible to program a robot (a proto-
typical example of an embodied computer system) exactly to perform a certain
behavior. It turns out that robots perform much better when they are able to
adapt their behaviors to at least some extent. A capability of development is
therefore a crucial aspect of an embodied system. However, as we will argue
below, it turns out that when studying development it is also crucial to take
into account the embodiment of the developing agent. Examples of the kinds of
development we are referring to are the four different kinds of behavior men-
tioned above. Studying such behaviors without taking into account that they
take place in an agent that has specific sensors and actuators and that has to
operate in a specific environment becomes such an abstract exercise that it is
almost meaningless. The kinds of behaviors an agent can perform, the events
it can detect and the ease with which it can manipulate its environment, all
depend on the embodiment of the agent. Therefore the mechanisms necessary
for development as well as the developmental trajectories an agent can follow
depend on the embodiment. But from a more practical point of view, embodi-
ment is important when studying development on robotic agents. If one wants
to train robots through imitation, for example, it is not a priori clear whether
the particular embodiment selected is able to imitate a pre-defined set of behav-
iors. When studying imitation in robotic agents, it is therefore perhaps better to
have the agents develop a repertoire of basic behaviors beforehand, for example
through imitation games [BJ7/8]. Such a repertoire of basic behaviors could then
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in principle be used to construct more intentional compound behaviors. In any
case, the embodiment selected for an agent limits the behaviors it can acquire
and the ways in which it can manipulate its environment, and therefore has a
strong influence on the agent’s development.

4 Experiments

For the four examples of developmental learning specific computer simulations
of populations of embodied agents will be proposed. Concrete results are shown
for motor babbling experiments and experiments on the imitation of gestures.

Fig. 2. The robot arm and stereovision system simulated in the experiments.

Motor Babbling
An individual agent learns a model of the forward and inverse kinematics of
its effector by motor babbling. The agent executes random motor commands
and observes how its effector behaves. We have experimented with Locally
Weighted Learning [9], combined with selection and organization of stored
points. In figure 3 on the left, the average error in the model of the inverse
kinematics and the number of points stored are shown. It can clearly be seen
that with very few samples good predictions can be made.

Imitation Game
We have investigated how agents can construct a shared repertoire of ac-
tions. We propose a multi agent system in which the interactions consist
of imitation games. In an imitation game two agents are randomly selected
from the population. Both agents are randomly assigned the roles of initiator
or imitator. A single imitation game causes the repertoires of both agents
to become more similar. By repeating the game over multiple combinations
of randomly selected agents, the repertoires of all agents become shared. In
each game, the imitator tries to imitate the action the imitator executed.
The initiator decides on the success of the game and sends binary feedback
to the imitator, such that the imitator can adapt its repertoire.
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Fig. 3. On the left: the average error in the learnt model of the inverse kinematics
and the number of associations stored. On the right: imitative success and number of
categories for 10000 imitation games played by two agents.

The imitation game was first proposed by de Boer [6] in the context of vowel
systems. He showed how a shared and human-like vowel system can emerge
in a population of agents. In later experiments, the imitation game was used
to show how a population of robotic agents develops a shared repertoire of
actions. In this experiment, agents are equipped with a (simulated) 6-DOF
robot arm with a gripper and a (simulated) stereo vision system, see figure
2. The actions performed by the agents are simple gestures with the robot
arm. In figure 3 on the right results are shown for a population of two agents
playing 10000 imitation games. While the imitative success remains high,
the agents succeed in constructing a shared repertoire of actions. Detailed
results are available in [78].

Individual Exploration

We plan to set up a concrete experiment in which a robotic agent learns
how its movements can cause changes in its environment. Starting from the
assumption that the agent already has a model of the kinematics of its ac-
tuator, we want to investigate how the agent can learn to modify its world.
In future experiments, agents will explore their environment by performing
random actions. Agents will assess the effect their actions have on the envi-
ronment. Actions are rewarded proportionally to the observed external effect,
such that agents learn to perform actions that require the least movement
to cause a maximum effect.

Intentional-Social Exploration
In individual exploration, agents learnt that some of their actions cause
changes in the environment and learn to prefer actions that have a maximal
effect. This new skill can bootstrap the difficult task of intentional imitation.
As the initiator performs a sequence of actions in order to obtain a certain
goal, the imitator can deduce the first agent’s goal by comparing the observed
effect of the initiator’s actions with the learnt associations between own
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actions and environmental effects. In this paradigm of goal-level imitation,
both agents will thus learn to pursue the same goal. However, they might
be performing different actions, because actions were learnt on an individual
basis and because agents can have different embodiments and thus require
other actions for accomplishing the same goal.

5 Discussion

When studying the developmental path towards intentional behavior, striking
parallels are noted between motor behavior and vocal communication. Both start
out with an initial ”babbling” phase in which the articulatory devices—effectors
or vocal tract—are explored and its inverse-kinematics are learned. Following this
phase, agents explore the interaction with the environment. In motor behavior
this is expressed as an exploration of the physical properties of objects and their
behavior when being manipulated. In vocal communication this is less explicit,
but it could exhibit itself for example in the fascination of children with echoing
sounds. At the same time, through gestural imitation, the agent can achieve a
representation which is influenced by observing other agents. In motor behavior,
this is the phase where agents mimic the actions without picking up the purpose
of the action. While in vocal communication, the agents acquire a repertoire
of sounds from their peers yet without learning the meaning associated with
each sound. The last phase is marked by learning to use behavior intentionally.
Objects are manipulated with a clear goal in mind, and vocalizations are uttered
with goal-like purpose. This marks the phase where actions are connected with
meaning.
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Abstract. How an internal observer, that is not given any a priori
knowledge or interpretation of what its sensors receives, learn to imitate
seems a formidable issue from a viewpoint of a constructivist approach
towards both establishing the design principle for an intelligent robot
and understanding human intelligence. This paper argue two issues to-
wards imitation by an internal observer: one concerns how to construct
the self body representation of the robot with vision and propriocep-
tion and the other concerns how to construct a mapping of vocalization
between agents with different articulation systems. Preliminary results
with real robots are given.

1 Introduction

The ability of imitation has been focused in robotics — partially because learning
by imitation is regarded as a promising way to accelerate the learning of a robot
[1], and partially because it is also one of the most interesting cognitive issues to
model human intelligence by a constructivist approach [2]. In the previous work,
the designer usually provides specific knowledge to imitate a certain behavior
(ex. [3]). However, to model how humans acquire the ability of imitation, we must
also address the issue to design a robot that can imitate by itself. In this study,
therefore, we assume that the robot is an internal observer. An internal observer
is defined as an agent that is not given any a priori knowledge or interpretation
of what the sensory signals it receives mean. By introducing the assumption that
the agent can distinguish the different senor modalities, we can start to attack
an issue how it can interpret its sensory signals by finding the relationships of
its sensory data between different modalities. That is, association of the sensory
data from different modalities.

For an internal observer to imitate, constructing a map between the observed
demonstrator’s body and its own one seems essential for a certain class of imi-
tation where it can imitate through performing the mapped action of the other
agent in the coordinate system of its own body based on this map. There are at
least two issues to be addressed. First, it must possess the representation of its
own body to associate it with other’s body. This is not easy because the internal
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observer does not even know what its body is at the beginning. Another con-
cerns how to construct a map between bodies of different agents without a priori
knowledge about the relationship between them. To learn the map by itself, the
robot needs to find references between them. We must consider the fact that the
body of the robot is different from the other agent’s one.

In the rest of this paper, we will introduce the preliminary results of our study.
Concerning acquiring the representation of the body, we address the problem
of finding its body in its uninterpreted sensory data [4]. A cross modal map is
proposed as the learning structure based on the idea that the invariance in multi-
sensory data represents the body. Concerning the construction of a mapping
between different bodies, we address the problem of acquiring common vowels
with the caregiver who has different articulation parameters from the robot [5].
We propose a model of interaction that guides a robot to acquire articulation to
vocalize.

2 Acquisition of Body Representation [4]

One of the fundamental problems of acquiring a representation of the body is
how to find the body in the receptive field without a priori knowledge from
a viewpoint of external observer. Some previous studies proposed methods by
which an agent distinguishes the body of the other agent and its own one based
on the correlation between its motion and the motion-induced optical flow (e.g.
[6/7]). However, the agent could not distinguish its body from the environment
without a priori knowledge how its motor system affects its vision. Although
another study proposed a method by which an agent finds the boundary of its
tactile sensor in the vision based on experience of collision [8], the agent needs
to be taught which object in the vision collides with its body.

Sensation of its body is considered to be invariant with its posture. For exam-
ple, when it fixates one object in the environment, the view changes depending
on the environmental changes. However, when it fixates its body, the view is
independent of the environment. Therefore, it is suggested that such invariance
in multimodal sensors can be used to define its body. The robot can find the
invariance through the experiences of taking various postures.

As a structure to find the invariance in multiple modalities, we introduce a
fully-connected network called cross modal map (see Fig.[l(a)). A cross modal
map consists of various sensor nodes that are hardwired to real sensors and
are activated when the hardwired sensors receive something in their receptive
fields. After Hebbian learning, only the weights between the nodes that are
simultaneously activated during a certain period of time increase. Since the same
pair of nodes are considered to be simultaneously activated in the sensation of
self-body, the connections which have large synaptic weights are regarded to
represent the body.

2.1 Experiment

A preliminary experiment to learn to represent the body surfaces of the robot
by the cross modal mapping between 15 nodes for binocular vision (disparity at
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the center region of the left camera) and 20 x 15 nodes for proprioception (joint
angles) was performed. Fig. [l (b) is a section of the acquired cross modal map
in which the arms have a certain postural configuration after about six minutes
learning. During the learning process, the robot keeps changing its posture at
random. It shows which disparity node has the largest connection with which
posture node as a function of the disparity with respect to pan and tilt angles
of the camera head. The shape of the function resembles an egocentric view of
the robot (see Fig.[[ (c)). The fixation areas of which disparity node have strong
connections (large weights) to the posture nodes were parts of the robot body.
Therefore, the robot succeed in learning the cross modal map that represents
the body surface of the learner.

Since the sensors of the robot are embedded on its own rigid body, the sensa-
tion of self body is constrained to be invariant with its proprioception. However,
by using the representation of the invariance, the robot can only judge whether
the fixated point in the vision is its body or not. We should extend the proposed
method for the concept of body part. Then, we should address many issues such
as representing kinematics/dynamics, representing the reachable region by the
robot movements, and the establishment of the correspondence between its own
body and the other’s.

7 propricceplive units

pan [deg]
o (b) A section of the ac- (¢) A real, egocen-
(2) The:architootime quired body representation tric view

Fig. 1. The architecture of the robot with a cross-modal map (a), a section of the
acquired cross modal map (b) and an example of the egocentric view of the robot (c)

3 Acquisition of Common Vowels [5]

Infants, who are internal observers, seem to acquire the phonemes of adults
without a priori knowledge about the correspondence between its vocalization
and the phonemes. Previous studies showed that computer simulated agents
with a vocal tract and cochlea can acquire shared vowels in population by self-
organization through interaction with other agents [9/10]. Although they didn’t
assume a priori knowledge about vowel, there was an assumption that the agents
can reproduce the similar sounds of other agents’ so that “imitation game [9]”
or “magnet effect [10]” makes self-organized vowels shared in population. How-
ever, infants face with more difficult situations. First, they cannot reproduce
the caregiver’s utterances as they are because their vocalization system is not
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mature. Furthermore, even if they can imitate the adult phoneme, they perceive
the reproduced sounds differently from the caregiver’s original sounds because
the sound wave of the former travels inside the body to the infant’s auditory
sensors. In this case, imitation cannot be equated with raw sensory similarity.
To take infant’s immaturity into account for modeling the infant’s acquisition
process of vowels, we use a robot that consists of an artificial articulatory sys-
tem with a 5-DoF's mechanical system that can deform a silicon-made vocal tract
connected to an artificial larynx (see Fig. ). It vocalizes some sounds which can
be interpreted as human vowels but are different from the human vowels from a
viewpoint of low-level signal similarity.

It is reported that maternal imitation of a three-month-old infant’s cooing
(i.e., parrot-like utterances) increases the vocalization rates [I1], and the infant’s
speech-like cooing tends to lead the mother’s utterances [12]. Based on these ob-
servations, we conjecture that the caregiver’s imitation of the robot’s vocaliza-
tions plays an important role in the vowel acquisition process — in other words, a
regular reaction (a parrot-like behavior), which can be regarded as action invari-
ance, make it possible to acquire vowels instead of actions that produce similar
sensory information. As a preliminary, constructive model of our conjecture, we
design a random articulation mechanism and embed it in the robot so that an
interaction can emerge between the robot and the caregiver who produces its
own corresponding vowel when the robot’s articulated sounds can be heard as
the vowel.

The learning mechanism consists of auditory and articulation layers and con-
nections between them. The auditory layer clusters formants (i.e., sound fea-
tures) of the caregiver by self-organization while the articulation layer clusters
its own articulation parameters. The connections between them are updated ac-
cording to Hebbian learning. The robot learns through interaction to match its
articulation with audition, that is, it acquires the vowel sounds of the caregiver.
However, interactions may connect multiple articulation units with a correspond-
ing vowel since the caregiver will interpret some vocalizations caused by different
articulations as the same vowel. To match a listened vowel with a unique artic-
ulation, we introduce subjective criteria, that are evaluated only in terms of the
robot’s state, into the learning rule — that is, the articulation vectors with less
torque and less intensity of deformation changes obtains stronger connection
from auditory layer and vice versa.

3.1 Experiment

We examined whether the robot can acquire Japanese vowel sounds by interact-
ing with a caregiver. After the robot vocalizes by a random articulation vector,
the human caregiver determines whether the robot’s vowel corresponds to the
Japanese vowel and utters the corresponding vowel. The robot calculates for-
mants of the caregiver’s vocalization and updates connections between nodes to
represent the caregiver’s utterances and ones to represent the robot’s articulation
by Hebbian learning with and without subjective criteria. Each element of a code
vectors in the articulation layer is quantized into five levels; these elements are
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Fig. 2. The appearance of the test-bed robot (a) and the acquired vowels (b)—(e)
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the motor commands of the random articulation mechanism. Fig2(b)—(e) shows
the acquired articulations. The vocalized sound produced by these articulations
can be interpreted as being Japanese vowels.

We observed which units in the articulation layer are activated by the prop-
agation of the activation in the auditory layer when the caregiver utters one
of vowels. The activated unit in the articulation layer can be regarded as the
matched vowels with the caregiver’s one. Fig. Bla) shows the distribution of the
matched articulation acquired by the normal learning rule without subjective
criteria, while Fig.[3(b) shows one by the learning rule with subjective criteria.
We can see that fewer articulations are selected in the learning with subjective
criteria. Therefore, we confirmed that the subjective criteria decreased the num-
ber of units in the articulation layer that are activated by the auditory layer.
The selected articulation were more facile to articulate.

4 Conclusion

As a preliminary work on understanding the mechanism of imitation by an inter-
nal observer, we studied the issues of acquiring the vowel sounds of a caregiver
and acquiring a body representation based on constructing mappings between
different modalities. Although the robots explored at random to construct the
mappings in the both proposed model, they had better utilize their developing
mappings to accelerate the learning process. Furthermore, they should learn to
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use the acquired mappings toward various cognitive functions. Therefore, how
to motivate the robot to learn and use mapping is one of our future topic.
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Abstract. In this contribution we consider the idea that successful evolutionary
design is best achieved in a networked system. We exemplify this thought by a
discussion of artificial regulatory networks, a recently devised method to model
natural genome-protein interactions. It is argued that emergent phenomena in
nature require the existence of networks in order to become permanent.

1 Introduction

Michael Conrad [1] is often cited with the following: ,, In conventional design the vast
majority of interactions that could possibly contribute to the problem are deliberately
excluded” . As designers of system we often lean toward the easiest solution: Divide
and conquer. l.e., we design a system using components proven to function as speci-
fied, with each of these components in turn being designed by the same process, but
for a particular sub-task. Whereas there is nothing wrong with such a design method-
ology, the question is whether it will scale up. By scaling-up | mean whether it would
be possible, using such a method, to design a system with, say, human-like complex-
ity and sophistication. Essentially we are asking whether a complexity which rivals
that of Life’s creatures can be designed and constructed in this way. It might be con-
jectured, that this will not be possible [2].

Now that life has already entered the scene, we can put forward a different thesis:
Life-like performance and complexity in the human (artificially designed) world will
only be possible if we take inspiration from Biology. Alternatively, human-designed
systems will unintentionally develop into life-like systems. The essence of this idea of
bio-inspiration is emergence (of functionality) through (possibly unforeseen) interac-
tions among components. Thus, instead of isolating the sub-parts of our systems in
order to get “clean” functionality, we should rather count on the interactions for se-
curing the functionality.

In order to stabilize emergent phenomena Nature uses networks. Networks are able
to capture the interactions (links) of components (nodes), and through multiple con-
nections from each component, become less prone to failures in components. This
way networks allow the emergent phenomenon to embody itself (as the network).
Examples from the natural world (including human activity) are
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Fig. 1. Networks distribute the connection between cause and effect, and produce fault-tolerant
mechanism.

Elementary particles,

Chemical reactions,

Regulatory networks,

Social interactions,

just to name a few. Elementary particles could be considered nodes in a network of
elementary particle interactions, molecules could be considered nodes of a chemical
reaction network, genes could be considered in the same way, interacting via their
proteins and regulatory sites. Organisms could be considered nodes of a social net-
work with communication links providing the edges of social interaction. What
makes networks so fascinating and, at the same time so difficult to analyze, is their
effect on simple cause-effect relations: They basically dissolve simple relations be-
tween causes and effects in favor of highly distributed networks of partial causes and
partial effects. Figure 1 tries to sketch the situation: Assuming outgoing edges as
causes and incoming edges as effects, one can see, that a simple relation of cause and
effect could be substituted by a network. Nodes collect effects from incoming nodes
and distribute there causes over outgoing edges. As a result, if analyzing form the
point of view of the original nodes, it is difficult to understand how cause and effect
nodes are actually connected. Natural evolution is not they only mechanism finding it
useful to apply these systems. A single link (or more than one) can be broken without
interrupting the cause-effect chain. The signals will simply flow via other edges. Thus
networks provide a highly fault-tolerant environment for signal transfer.
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Fig. 2. Comparison of human and natural (evolutionary) design process

2 TheHuman Design Process Versusthe Evolutionary Design
Process

In this contribution, we are concerned with the design of systems, i.e. the intentional
production of effects or function. Because networks are acting in a highly non-linear
fashion and are difficult to analyze, evolutionary approaches to the design of those
systems are considered. Here it might help to compare the human and the natural
design process in more detail (see Fig. 2).

Traditional design consists of the application of complex principles and rules. It is
usually a TOP-DOWN approach which begins with a high-level specification of the
problem and moves down through a hierarchy of refinements until realization is
reached. Only the best design is realized and closely examined for weaknesses. These
weaknesses are then addressed in a separate step and weeded out.

Evolutionary design, on the other hand, consists of an often random combination
of a large number of structural elements. If not random, the combination follows
simple principles. It is a BOTTOM-UP approach which often passes through a more
or less complex developmental process. In order to work properly, a multitude of
designs must be examined by Nature. Examination takes the form of tests under
“real” conditions.

The difference between the two design methods boils down mostly to cost consid-
erations. If humans had the same cost structure as nature, we’d probably embark on
an evolutionary design path towards new products and systems.

Natural design processes are said to be non-intentional, because no overarching
plan to achieve certain functions can be identified. If something new is achieved, it is
often by way of exaptation [3], a discovery process that works by exploiting side-
effects to other functionally important (and selected for) features. In order for this
process to be effective, functions should not be isolated from each other. In other
words, a single element should have a potential for multiple functions and the parti-
tion of functions between components should be more “fluid” than we usually would
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tolerate. There should also be no boundaries between subsystems, at least no tight
boundaries, because communication between subsystems is essential in order to bene-
fit from discovered side-effects. All of this naturally connects to what has been said
about networks.

It is also interesting to note, that living organisms are usually generated through a
developmental process, i.e. a process of building while working. Again, networks are
able to accommodate such a requirement, by providing functions while new nodes
and connections are added in.

3 Approachesto Construction

Putting together an entity with of the order of

e 1000 parts is possible, but difficult
e 1,000,000 parts is possible in principle, but very difficult
¢ 1,000,000,000 parts is impossible with conventional methods.

Humans construct machines by producing parts, putting them together and turning
them on. Each of the parts has its independent existence and can be manufactured in
isolation from other parts. An overall plan will make sure that the correct order of
construction is obeyed, leading to an ultimately functional device.

This is fundamentally different from how Nature constructs systems. No fixed or-
der of events in the construction of a system can be obeyed, due to the stochastic and
distributed nature of interactions. Also, parts cannot be produced in isolation; neither
can they be produced from a master plan. Finally, living organisms cannot be “turned
on” once enough components are assembled. Rather, even a rudimentary system must
live from the very beginning in order to be able to continue to live.

Besides problems of controllability of spatial and temporal flows, the sheer number
of elements needed to build a living organism is substantial. This is one of the most
daunting problems Nature has faced when designing and constructing organisms.
Other methods of construction than those we apply in machine construction are
needed if a working entity should result from the construction process. These new
methods involve growing an entity from a single plan. But instead of having this
single plan be always accessed from multiple sites, the plan itself becomes part of
what is being built, by integrating it into the parts and subsystems being constructed.

The information dilemma of Nature’s evolutionary design is substantial, and can
be summarized with the following questions [4]:

e  How to instruct bodies with so few genes?
e  How to program brains for so many situations?

Nature’s answer to the first question posed was to invent a developmental process of
construction. Nature’s answer to the second, more detailed question was to use an
adaptive process which extends development from the ontogenetic level.

In order to appreciate the challenge Nature has been facing, I’ll give a few num-
bers:
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Take a single-cell organism like E.Cali. It has

e 300 x 10”6 molecules (excluding water)

3250 different varieties (proteins, MRNA, tRNA, DNA, lipids,)
4.6 x 1076 base pair genome = 6 Mbits of information

4,300 protein coding genes (88 % of genome)

11 % of genome contains regulatory information.

If we want to go further and have a look at a multi-cellular organism like H.Sapiens:
e 50x10M2 cells

e  Each cell of about the complexity of an E.Coli

e 3 x 1079 base pairs = 4 Gbit of information

e 40,000 - 100,000 genes

The human brain consists of

e 10”9 neurons

e 1,000 - 10,000 synaptic connections per neuron
e 300 - 1,000 vesicles per synapse

As mentioned, the response of Nature was to invent development, a process, by which
e the required complexity is grown

e environmental complexity is channeled into the developing phenotype, i.e. the
genotype only directs the assembly

exploitation of side effects (through evolution) is possible

open-ended evolution is brought about through adding layers of complexity

the generation of modular structure comes for free due to its recursive nature
coordination of cells is achieved via a chemical cell dialogue

a switch into a mode of self-maintenance can be made after maturity has been
reached

e fitness tests are punctual

e time and dynamics play an essential role

e and organism grows from a 1-cell stage which allows for sexuality.

Many of these features can be explored in computer models (see for example [5]),
and a whole new area, computational development is presently forming itself. Before
moving any further, we should check with biologists about what development is in
their mind. 1’d like to adopt the following definition of development for the purposes
of this paper.
e  Development is a differential transcription (and translation) process of genes in
different cells and tissues at different times and with different rates.
e  Each step in this sequence is ultimately initiated by the transcription and transla-
tion of the previous step.
e  Diversity of body plans in all organisms is caused by
O Interaction between gene products
O  Shifts of timing of gene expression: Heterochrony
O Shifts in location of gene expression: Differentiation
¢ Implementation of development is realized using regulatory networks.
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This last point is most notable, as it underlines the earlier reference to networks as the
means for anchoring emergent phenomena. A closer look at the mechanisms of de-
velopment and especially the role of genes in the process reveals:

e  Genotypes are different from phenotypes
Genes orchestrate the interaction of molecules (by regulation)
Most molecules are available from the environment
Some molecules are produced by genes
Gene products are most often used as “amplifiers” injected at crucial branch-
ing points

The interface between genomes and bodies, and thus the implementation method for
embodiment is provided by regulatory networks. They are the means of Nature to
stabilize emergent phenomena of construction. How does it work? In order to ex-
plore this question, we have suggested a model for artificial regulatory networks that
builds on an earlier model proposed by T. Reil [6].

4 An Artificial Regulatory Network

The model (see [7, 8] for details) consists of a genome of bits generated by a random
process. This process comes in two alternative implementations, one being a simple
seeding of the bits by a process randomly determining the value in each bit position.
The other process is more sophisticated and consists of 2 different phases that are
iteratively applied, until the prescribed length of the genome is reached: Starting from
a small genome kernel, again seeded by randomly choosing values, it loops through
successive stages of duplication and divergent mutation until final length is reached.

In a second process, meaning is ascribed to bits of the genome. Figure 3 describes
the situation. By scanning the genome, certain bit patterns are isolated which consist
of sub-strings of small size. These sub-strings are called promoters, and they deter-
mine the open reading frame of genes. To make things simple, genes are of fixed
length, and thus a fixed number of bits subsequent to the promoter are expressed by
applying a genotype-phenotype mapping. After mapping, which results in another bit
pattern of fixed length, a protein has been produced. The main feature of this protein
is that it is mobile. Upon it wandering around it might encounter other proteins, or it
might hit the genome at any place of chance. Depending on the pattern match be-
tween the protein and the genome at the position of encounter, an interaction occurs
in the following way: The protein will attach at the genome, and will detach again
after some time. The time of attachment will be all the longer, the better the (com-
plementary) match between protein and genome is.

A third feature needs to be mentioned to understand what is happening in such a
system: Upstream from the promoter site of a gene (we envisage only very few genes
relative to the number of bits on a bit string genome), there are special sites called
enhancer and inhibitor sites. Occupation of these sites with proteins will have a pro-
found effect on the efficiency of expression of the corresponding gene. The effect
will depend in a nonlinear way on the matching between genome and proteins trying
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Fig. 3. The artificial regulatory network. A strand of bits, the genome contains short sequences
signaling the beginning of a gene. Genes are expressed into proteins which subsequently can
wander around and attach to the genome, specifically at regulatory sites upstream from genes,
where they influence the rate of expression of other genes. Attachment is controlled in turn by
the degree of complementarity between pattern on the genome and pattern on the protein.

to attach. The result of this process, in connection with a time-scale for production of
new proteins via genotype-phenotype mapping is that particular inhibitor / enhancer
sites are occupied more often and thus have more influence on the expression of the
corresponding gene than others. Readers interested in details and quantitative consid-
erations need to compare recent publications [7, 8].

It can be said, that the bit genome discussed and its gene products constitute an ar-
tificial regulatory network: The amount of each protein is determined by the matching
between proteins and its regulatory site on the genome. We can imagine genes to be
nodes in a network, with proteins building the links between those nodes, and the
weight on links being the interaction strength determined by the degree of matching
between a protein and the regulatory site of a gene.

Figure 4-6 show images of networks resulting from the second generation process
(duplication and divergence) mentioned above at various stages of resolution. Figures
have been drawn among network nodes that exceed a certain interaction threshold
only. The lower the threshold, the more nodes (genes) come into the play, and the
more intricate the connection pattern becomes. It is interesting — though not surpris-
ing - to see that above a certain threshold the network decays into unconnected com-
ponents of smaller and smaller size.

At this point, my earlier statement regarding adaptation using side-effects (exapta-
tion) probably becomes clearer: The strongest interactions basically show a network
of unconnected components, mostly two genes interacting with each other. Suppose
for the moment this would be all that is there. Thus, a modular structure is present in
which each pair of genes can be put to independent, yet functionally similar use by
evolution.

Lowering the threshold only a bit shows a different picture: New nodes come into
play that did not have a role at the former threshold level. And there is a second ef-
fect: Independent modules become connected into larger units, thus there is crosstalk
between modules. Both effects can be molded by evolution in an arbitrary way. If
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Fig. 4. ARN, generated by a process of duplication and divergence events. High threshold of
matching between nodes required. Network decays into very simple modules of 2 to 3 nodes.

Fig. 5. ARN, generated by a process of duplication and divergence events. Lower threshold of
matching between nodes required. Network contains both connected and non-connected com-
ponents.

Fig. 6. ARN, generated by a process of duplication and divergence events. Low threshold of
matching between nodes required. Network is fully connected and shows complex organiza-
tion.

there is a need for new function one of the new genes in the game could be assigned
to such use. If, on the other hand, it should turn out that crosstalk between “modules”
has a beneficial effect on the overall system, this crosstalk could be elevated by in-
creasing the interaction strength between the participating modules. This is the stuff
evolution likes the most: Rich behavior yet smooth transitions between alternatives.

How would “molding” by evolution actually work? Simply by mutating the regu-
latory sites upstream from a gene, the interaction with particular proteins (and thus
other genes) can be strengthened. A single bit flip would already elevate (or decrease)
an interaction one step, allowing this interaction to become visible in a picture drawn
again after the mutation. Possible side-effects of the mutation notwithstanding, very
smooth transitions between network configurations are realized.

What has been numerously stated in regard to the evolution of modularity has
probably become clearer with our example of an artificial regulatory network: Mod-
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ules in nature are isolated from each other only to a certain degree. There is always a
weak interaction between modules which effectively blurs the distinction between
them and provides the rich material evolution likes to work with.

5 Embodiment

There are various notions of embodiment. In this contribution | have tried to argue
that emergent phenomena can be “embodied” in networks which in turn are subject to
evolutionary forces of variation and selection. If we step back a bit and look at bodies
in the literal sense, we might adopt the same perspective: Bodies are so important for
active entities, for adaptation, learning and intelligence, because bodies allow the
environment to network with the system. l.e. bodies at least partially remove the iso-
lation of an otherwise (machine-like) entity. Trying to achieve intelligent functions
without this “crosstalk™ between bodies and the environment is a typical human en-
terprise bound to fail.

Acknowledgments. | gratefully acknowledge discussions and joint work with Julian
Miller on aspects of development and evolution. Discussions and joint work with my
student P.Dwight Kuo at Memorial University have also contributed to posing
questions raised here.
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Abstract. We provide an overview of the evolutionary approach to the emer-
gence of artificial intelligence in embodied behavioral agents. This approach,
also known as Evolutionary Robotics, builds and capitalizes upon the interac-
tions between the embodied agent and its environment. Although we cover re-
search carried out in several laboratories around the world, the choice of topics
and approaches is based on work carried out at EPFL. We describe a large
number of experiments including evolution of single robots in environments of
increasing complexity, competitive and cooperative evolution, evolution of vi-
sion-based systems, evolution of learning, and evolution of electronics and
morphologies for autonomous robots.

1 Introduction

For hundreds of years mankind has been fascinated with machines that display life-
like appearance and behaviour. The early robots of the 19" century were anthropo-
morphic mechanical devices composed of gears and springs that would precisely re-
peat a pre-determined sequence of movements. Although a dramatic improvement in
robotics took place during the 20" century with the development of electronics, com-
puter technology, and artificial sensors, most of today robots used in factory floors are
not significantly different from ancient automatic devices because they are still pro-
grammed to precisely execute a pre-defined series of actions. Are these machines in-
telligent? In our opinion they are not; they simply reflect the intelligence of the engi-
neers that designed and programmed them. In the early 90’s, we and other researchers
started to address this issue by letting robots evolve, self-organise, and adapt to their
environment in order to survive and reproduce, just like all life forms on Earth have
done and keep doing. The name Evolutionary Robotics was coined to define the col-
lective effort of engineers, biologists, and cognitive scientists to develop artificial ro-
botic life forms that display the ability to evolve and adapt autonomously to their en-
vironment.

Within this perspective, artificial intelligence is a continuous and open-ended proc-
ess that capitalises on physical interactions between the agent and its environment
without human intervention. Embodiment does not only provide realism and semantic
grounding to intelligent artefacts. It also provides opportunities that are unconceivable

F. lida et al. (Eds.): Embodied Artificial Intelligence, LNAI 3139, pp. 293-311, 2004.
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for bodiless systems. Embodied systems can tap upon a virtually infinite range of sen-
sory cues and actions available in the physical world. Given the limits of their proc-
essing and behavioural abilities, they can be opportunistic and select only those sen-
sory cues and actions that are necessary to carry on with the business of survival and
reproduction. For example, ants can build magnificent nests with differentiated
space, climate control, and air filtering. They do so without resorting to a plan, but by
executing an evolved set of simple, but highly specific, sensory-triggered actions. In
embodied systems, computation, representation, and memory can be partially out-
sourced to the physical laws and material persistence of the world. Consider for ex-
ample the task of goal-directed navigation. One option to achieve that task is to build,
store, and use an internal model of the entire environment. Another option is to select
and associate simple sensory cues with sequences of actions that will lead from one
cue to the next until the goal is reached. Whereas man-made intelligent systems tend
to use the first option, there is mounting evidence that animals (at least simple ones)
exploit the second option.

In this chapter we will give an overview of some milestone experiments in evolu-
tion of physical robots and describe some examples of the intelligence that these ro-
bots develop.

2 Evolutionary Robotics

The possibility of evolving artificial creatures through an evolutionary process had al-
ready been evoked in 1984 by neurophysiologist Valentino Braitenberg in his truly
inspiring booklet “Vehicles. Experiments in Synthetic Psychology”. Braitenberg pro-
posed a thought-experiment where one builds a number of simple wheeled robots
with different sensors variously connected through electrical wires and other elec-
tronic paraphernalia to the motors driving the wheels. When these robots are put on
the surface of a table, they will begin to display behaviours such as going straight, ap-
proaching light sources, pausing for some time and then rushing away, etc. Of course,
some of these robots will fall off the table. All one needs to do is continuously pick a
robot from the tabletop, build another robot just like one on the table, and add the new
robot to the tabletop. If one wants to maintain a constant number of robots on the ta-
ble, it is necessary to copy-build one robot for every robot that falls from the table.
During the process of building a copy of robots, one will inevitably make some small
mistakes, such as inverting the polarity of an electrical connection or using a different
resistance. Those mistaken copies that are lucky enough to remain longer on the ta-
bletop will have a high number of descendants, whereas those that fall off the table
will disappear for ever from the population. Furthermore, some of the mistaken copies
may display new behaviours and have higher chance of remaining for very long time
on the tabletop. You will by now realise that the creation of new designs and im-
provements through a process of selective copy with random errors without the effort
of a conscious designer was already proposed by Darwin to explain the evolution of
biological life on Earth.

However, the dominant view by mainstream engineers that robots were mathe-
matical machines designed and programmed for precise tasks, along with the technol-
ogy available at that time, delayed the realisation of the first experiments in Evolu-
tionary Robotics for almost ten years. In the spring of 1994 our team at EPFL (Swiss
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Federal Institute of Technology in Lausanne) [8] and a team at the University of Sus-
sex in Brighton [15] reported the first successful cases where robots evolved with
minimal human intervention and developed neural circuits allowing them to autono-
mously move in real environments. The two teams were driven by similar motiva-
tions. On the one hand, we felt that a designer approach to robotics was inadequate to
cope with the complexity of the interactions between the robot and its physical envi-
ronment as well as with the control circuitry required for such interactions. Therefore,
we decided to tackle the problem by letting these complex interactions guide the
evolutionary development of robot brains subjected to certain selection criteria (tech-
nically known as fitness functions), instead of attempting to formalise the interactions
and then designing the robot brains. On the other hand, we thought that by letting ro-
bots autonomously interact with the environment, evolution would exploit the com-
plexities of the physical interactions to develop much simpler neural circuits than
those typically conceived by engineers who use formal analysis methods. We had
plenty of examples from nature where simple neural circuits were responsible for ap-
parently very complex behaviours. Ultimately, we thought that Evolutionary Robotics
would not only discover new forms of autonomous intelligence, but also generate so-
lutions and circuits that could be used by biologists as guiding hypotheses to under-
stand adaptive behaviours and neural circuits found in nature.
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Fig. 1. Left: Artificial Evolution of neural circuits for a robot connected to a computer. Right:
The miniature mobile robot Khepera in the looping maze used during an evolutionary experi-
ment.

In order to carry out evolutionary experiments without human intervention, at
EPFL we developed the miniature mobile robot Khepera [25] (6 cm of diameter for
70 grams) with eight simple light sensors distributed around its circular body (6 on
one side and 2 on the other side) and two wheels (figure 1). Given its small size, the
robot could be attached to a computer through a cable hanging from the ceiling and
specially designed rotating contacts in order to continuously power the robot and let
the computer keep a record of all its movements and neural circuit shapes during the
evolutionary process, a sort of fossil record for later analysis. The computer generated
an initial population of random artificial chromosomes composed of 0’s and 1’s that
represented the properties of an artificial neural network. Each chromosome was then
decoded, one at a time, into the corresponding neural network whose input neurons
were attached to the sensors of the robots and the output unit activations were used to
set the speeds of the wheels. The decoded neural circuit was tested on the robot for
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some minutes while the computer evaluated its performance (fitness). In these ex-
periments, we wished to evolve the ability to move straight and avoid obstacles.
Therefore, we instructed the computer to select for reproduction those individuals
whose two wheels moved on the same direction (straight motion) and whose sensors
had lower activation (far from obstacles). Once all the chromosomes of the population
had been tested on the same physical robot, the chromosomes of selected individuals
were organised in pairs and parts of their genes were exchanged (crossover) with
small random errors (mutations) in order to generate a number of offspring. These
offspring formed a new generation that was again tested and reproduced several
times. After 50 generations (corresponding to approximately two days of continuous
operation), we found a robot capable of performing complete laps around the maze
without ever hitting obstacles. The evolved circuit was rather simple, but still more
complex than hand-designed circuits for similar behaviours because it exploited non-
linear feedback connections among motor neurons in order to get away from some
corners. Furthermore, the robot always moved in the direction corresponding to the
higher number of sensors. Although the robot was perfectly circular and could move
in both directions in the early generations, those individuals moving in the direction
with fewer sensors tended to remain stuck in some corners because they could not
perceive them properly, and thus disappeared from the population. This represented a
first case of adaptation of neural circuits to the body shape of the robot in a specific
environment.

The Sussex team instead developed a Gantry robot consisting of a suspended cam-
era that could move in a small box along the x and y coordinates and also rotate on it-
self [15]. The image from the camera was fed into a computer and some of its pixels
were used as input to an evolutionary neural circuit whose output was used to move
the camera. The artificial chromosomes encoded both the architecture of the neural
network and the size and position of the pixel groups used as input to the network.
The team used a form of incremental evolution whereby the gantry robot was first
evolved in a box with one painted wall and asked to go towards the wall. Then, the
size of the painted area was reduced to a rectangle and the robot was incrementally
evolved to go towards the rectangle. Finally, a triangle was put nearby the rectangle
and the robot was asked to go towards the rectangle, but avoid the triangle. A remark-
able result of these experiments was that evolved individuals used only two groups of
pixels to recognise the shapes by moving the camera from right to left and using the
time of pixel activation as an indicator of the shape being faced (for the triangle, both
groups of pixels become active at the same time, whereas for the rectangle the top
group of pixels becomes active before the lower group). This was compelling evi-
dence that evolution could exploit the interaction between the robot and its environ-
ment to develop smart simple mechanisms that could solve apparently complex tasks.

The next question was whether more complex cognitive skills could be evolved by
simply exposing robots to more challenging environments. To test this hypothesis, at
EPFL we put the Khepera robot in an arena with a battery charger in one corner under
a light source (figure 2) and let the robot move around as long as its batteries were
discharged [9]. To accelerate the evolutionary process, the batteries were simulated
and lasted only 20 seconds; the battery charger was a black painted area of the arena
and when the robot happened to pass over it, the batteries were immediately re-
charged. The fitness criterion was the same used for the experiment on evolution of
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Fig. 2. Left: A Khepera robot is positioned in an arena with a simulated battery charger (the
black-painted area on the floor). The light tower above the recharging station is the only source
of illumination. Right: Activity levels of one neuron of the evolved individual. Each box shows
the activity of the neuron (white = very active, black = inactive) while the robot moves in the
arena (the recharging area is on the top left corner). The activity of the neuron reflects the ori-
entation of the robot and its position in the environment, but is not affected by the level of bat-
tery charge.

straight navigation (figure 1), that is keep moving as much as possible while staying
away from obstacles. Those robots that managed to find the battery charger (initially
by chance) could live longer and thus accumulate more fitness points. After 240 gen-
erations, that is 1 week of continuous operation, we found a robot that was capable of
moving around the arena, go towards the charging station only 2 seconds before the
battery was fully discharged, and then immediately returning in the open arena. The
robot did not simply sit on the charging area because it was too close to the walls and
its fitness was very low (remember from the previous experiment that robots had
higher fitness when its proximity sensors had lower activation). When we analysed
the activity of the evolved neural circuit while the robot was freely moving in the
arena, we discovered that the activation of one neuron depended on the position and
orientation of the robot in the environment, but not on the level of battery charge (fig-
ure 2). In other words, this neuron encoded a spatial representation of the environment
(sometime referred to as “cognitive map” by psychologists), computationally similar
to some neurons that neurophysiologists discovered in the hippocampus of rats ex-
ploring an environment.

3 Competitive Co-evolution

Encouraged by these experiments, we decided to make the environment even more
challenging by co-evolving two robots in competition with each other. The Sussex
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team had begun investigating co-evolution of predator and prey agents in simulation
to see whether increasingly more complex forms of intelligence emerged in the two
species [24]. They showed that the evolutionary process changed dramatically when
two populations co-evolved in competition with each other because the performance
of each robot depends on the performance of the other robot. In the Sussex experi-
ments the fitness of the prey species was proportional to the distance from the preda-
tor whereas the fitness of the predator species was inversely proportional to the dis-
tance from the prey. Although in some evolutionary runs they observed interesting
pursuit-escape behaviours, often co-evolution did not produce interesting result.

Fig. 3. Co-evolutionary prey (left) and predator (right) robots. Trajectories of the two robots
(prey is white, predator is black) after 20, 45, and 70 generations.

At EPFL we wanted to use physical robots with different hardware for the two spe-
cies and give them more freedom to evolve suitable strategies by using as fitness
function the time of collision instead of the distance between the two competitors
[10]. In other words we did not explicitly select predator robots for getting closer to
the prey and prey robots for keeping at a distance from predators, but we let them
choose the most suitable strategies to succeed the ultimate survival criterion: catch the
prey and avoid the predator, respectively. We created a predator robot with a vision
system spanning 36 degrees and a prey robot that had only simple sensors capable of
detecting an object at 2 cm of distance, but that could move twice as fast as the
predator (figure 3). These robots were co-evolved in a square arena and each pair of
predator and prey robots were let free to move for 2 minutes (or less if the predator
could catch the prey). The results were quite surprising. After 20 generations, the
predators developed the ability to search for the prey and follow it while the prey es-
caped moving all around the arena. However, since the prey could go faster than the
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predator, this strategy did not always pay off for predators. 25 generations later we
noticed that predators watched the prey from far and eventually attacked it anticipat-
ing its trajectory. As a consequence, the prey began to move so fast along the walls
that often predators missed it and crashed into the wall. Again, 25 generations later
we discovered that predators developed a “spider strategy”. Instead of attempting to
go after the prey, they quietly moved towards a wall and waited there for the prey to
arrive. The prey moved so fast near the walls that it could not detect the predator early
enough to avoid it!

However, when we let the two robot species co-evolve for more generations, we
realised that the two species rediscovered older strategies that were effective against
the current strategies used by the opponent. This was not surprising. Considering the
simplicity of the environment, the number of possible strategies that can be effec-
tively used by the two robot species is limited. Even in nature, there is evidence that
co-evolutionary hosts and parasites (for example plants and insects) recycle old
strategies over generations.

Stefano Nolfi, who worked with us on these experiments, noticed that by making
the environment more complex (for example with the addition of objects in the arena)
the variety of evolved strategies was much higher and it took much longer before the
two species re-used earlier strategies [26]. We also noticed that the competing selec-
tion pressure on the two species generated much faster evolution and behavioural
change than in robots evolved in isolation under an externally defined fitness func-
tion. These experiments never stopped surprising us and indeed turned out to be a
source of inspiration for the best-selling novelist Michael Crichton in his latest sci-
ence fiction book Prey [6]. We feel that this area of research has still much to deliver
for the bootstrapping of machine intelligence.

4 Cooper ative Co-evolution

Beside competition, living organisms display a sort of "collective intelligence", char-
acterised by complex levels of cooperation that provide them with higher evolutionary
advantage. For instance, it has been estimated that one-third of the animal biomass of
the Amazon rain forest consists of social insects, like ants and termites [17]. The suc-
cess of social insects might come from the fact that social interactions can compensate
for limitations of the individual, both in terms of physical and cognitive capabilities.

A social insect colony is a complex system often characterised by division of la-
bour and high genetic similarity among individuals [37]. Ants, bees, wasps, and ter-
mites provide some of the most remarkable examples of altruist behaviour with their
worker caste, whose individuals forego their own reproduction to enhance reproduc-
tion of the queen. These and other examples of group harmony and cooperation show
the colony as if it behaved as a "superorganism” where individual-level selection is
muted, with the result that colony-level selection reigns.

Biologists agree that relatedness plays a major role in favouring the evolution of
cooperation in social insects [19]. However, the concept of the colony as a super-
organism has been challenged [19]. In collaboration with ant biologist Laurent Keller
and robot designer Roland Siegwart, we are trying to determine whether the role of
relatedness and the level of selection can be experimentally demonstrated using colo-
nies of artificial ants implemented as small mobile robots with simple vision and
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communication abilities (figure 4). For this purpose, we have defined experimental
settings where these robotic ants are supposed to look for food items randomly scat-
tered in a foraging area. The robots are provided with artificial genomes that code for
their behaviours in an indirect manner (i.e., the patterns of behaviour activation coded
by the same genetic code vary according to the phenotype frequencies in the colony).
There are two kinds of food items. Small food items can be transported by single ro-
bots to the nest. Large food items require two cooperating robot to be pushed away.
By varying the energetic value of the food items, we can put more or less pressure on
the advantage of cooperative behaviours.

= n ]
] (53 M

Fig. 4. Left: The sugarcube robot Alice equipped with vision system, distance sensors, commu-
nication sensors, and two frontal ,,mandibles” to better grasp objects. Right: The arena with
small and large objects. The nest is under the textured wall where a small gap let objects —but
not robots—fall on the floor.

In a first set of experiments carried out in simulation, we investigated how colony
performance evolved under different levels of selection (individual and colony level)
and under high versus low “genetic” relatedness between robots of the same colony.
We ran experiments using a minimalist simulator of the collective robotics evolution-
ary setup [28], and found that “genetically” homogeneous colonies of foraging simu-
lated robots performed better than heterogeneous ones. Moreover, our experiments
showed that altruistic behaviours have low probability of emerging in heterogeneous
colonies evolving under individual-level selection. Our current work is aimed at run-
ning these experiments in colonies of 20 sugar-cube robots in order to better study the
role of physical interactions.

5 Physical Interactions

Collaboration among animals can also take place at a pure physical level. For in-
stance, a mother can help her kids by pushing, pulling, or transporting them on the
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back. Human acrobats can build towers with their bodies, ants can build bridges, rafts,
pulling chains or doors, and bees can build curtains or balls, for instance. In all these
examples the group of individuals can achieve a task impossible for a single individ-
ual by dynamically aggregating into different and functional physical structures. To
investigate this new research direction, in collaboration with other European partners
[29], we are developing a new robotic concept, called s-bot, capable of physically in-
terconnecting to other s-bots to form a swarm-bot (http://www.swarm-bots.org). Each
s-bot is a fully autonomous mobile robot capable of performing basic tasks such as
autonomous navigation, perception of the environment and grasping of objects (figure
5). Ants can lift each other and heavy objects with their mandibles and can establish
flexible connections between each other with their legs. Similarly, each s-bot is
equipped with a strong beak gripper that can lift heavy objects or another s-bot and
with a flexible gripper that can grasp another s-bot on the belt to maintain physical
contact. S-bots can organise in swarm-bot configuration by dynamically attaching to
each other and form various shapes according to environmental constraints or task
needs.

Fig. 5. Left: The prototype of the s-bot with the strong beak gripper and the flexible arm. Right:
Several s-bots can self-connect to build a swarm-bot capable of passing obstacles one single s-
bot cannot deal with.

In addition to these features, an s-bot is capable of communicating with other s-
bots by emitting and receiving sounds. S-bots can also use body signals by changing
the colour of their body belts to display their internal states. Other s-bots, with their
vision system, can see this corporal expression and react, for instance helping the
“red” robot, following the “blue” one, or connecting to the “green” one to form a
swarm-bot configuration. Assembled in swarm-bot configuration, the robots are able
to perform exploration, navigation and transport of heavy objects in very rough ter-
rain, where a single s-bot could not possibly achieve the task.

The control of this hardware structure is very challenging and has implications on
the whole design, from mechanics to software. In this project we resort to a combina-
tion of artificial evolution, behaviours inspired from the world of social insects, and
standard engineering methodologies. Standard engineering methodologies are applied
in all local sub-problems where classical approaches are well known, reliable and
form a basic structure on top of which we can build the collective control. This is for
instance the case of mechanical design, low-level motor control, sensor management
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(not processing), and low level communication procedures. Bio-inspired solutions are
applied where natural mechanisms are well identified and can be translated into our
robot design and control. Examples of bio-inspired design elements are the shape of
the grippers and the interactive synchronisation of the robots when grasping an object.
Another bio-inspired element is the general concept to solve complex tasks with the
combination of many simple mechanisms. On the top of these two approaches we ap-
ply artificial evolution to exploit in the best way the specific properties of each part
for a given behaviour.

Artificial evolution generated a set of simple rules capable of coordinating the
movement of a group of connected s-bots [1]. In this particular case, evolution ex-
ploited the property of a force sensor within the body of each s-bot to integrate the
behaviour of the whole group without need of external communication or additional
coordination layers. These results indicate that physical interactions alone can provide
useful information for coordination. Still, it is the responsibility of the engineer to
provide sensors and actuators that can be handled efficiently by evolution. This illus-
trates a big difference with respect to natural evolution, where the behaviours and the
body of organisms co-evolve.

6 ActiveVision and Feature Selection

Brains are characterised by limited bandwidth and computational resources. At any
point in time, we can focus our attention only to a limited set of features or objects.
One of the most remarkable —and often neglected— differences between machine vi-
sion and biological vision is that computers are often asked to process an entire image
in one shot and produce an immediate answer whereas animals are free to explore the
image over time searching for features and dynamically integrating information over
time.

We thought that the computational complexity of vision-based behaviour could be
greatly simplified if the processes of active vision and of feature selection are co-
evolved while the robot interacts with the environment. Each of these two processes
has been investigated and adopted in machine vision. Active vision is the sequential
and interactive process of selecting and analysing parts of a visual scene [2]. Feature
selection instead is the development of sensitivity to relevant features in the visual
scene to which the system selectively responds [14]. However, the combination of
active vision and feature selection is still largely unexplored.

To investigate that hypothesis, we devised a very simple neural architecture com-
posed of only one layer of synaptic connections (figure 6, left) that link visual neurons
to two sets of motor outputs. One set of output units controls the behaviour of the
system (for example, the movements of a robot or the categorisation of an image dis-
crimination system). The other set controls the behaviour of the vision system
(movement over the visual field, zooming factor, pre-filtering strategy). The synaptic
weights, which are genetically encoded and evolved using a simple genetic algorithm,
are responsible both for the visual features to which the system responds to and for
the actions of the vision system.
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Fig. 6. Left: Architecture of the control system. The architecture is composed of A) a grid of
visual neurons with non-overlapping receptive fields whose activation is given by B) the grey
level of the corresponding pixels in the image; C) a set of proprioceptive neurons that provide
information about the movement of the vision system; D) a set of output neurons that determine
the behaviour of the system (pattern recognition, car driving, robot navigation); E) a set of out-
put neurons that determine the behaviour of the vision system; F) a set of evolvable synaptic
connections. The number of neurons in each sub-system can vary according to the experimental
settings. Right: The Koala robot equipped with a mobile camera whose image is fed into the vi-
sion neurons of the neural architecture.

We carried out a series of experiments on co-evolution of active vision and feature
selection for behavioural systems equipped with primitive retinal systems and delib-
erately simple neural architectures [7]. In a first set of experiments, we show that sen-
sitivity to very simple features is co-evolved with, and exploited by, active vision to
perform complex shape discrimination [18]. We also show that such discrimination
problem is very difficult for a similar vision system without active behaviour because
the architecture must solve non-linear transformations (position and size invariance)
of the image in order to solve the task. Instead, the co-evolved active vision and fea-
ture selection system rely on linear transformations of parts of the image (oriented
edges and corners), which are actively searched and sequentially scanned in order to
provide the correct answer. In a second set of experiments, we applied the same co-
evolutionary method and architecture for driving a simulated car over roads in the
Swiss Alps and show that active vision is exploited to locate and fixate the edge of the
road while driving the car. In a third set of experiments, we used once again the same
co-evolutionary method and architecture for an autonomous robot equipped with a
pan/tilt camera (figure 6, right) that is asked to navigate in an arena located in an of-
fice environment [22]. Evolved robots exploit active vision and simple features to di-
rect their gaze at invariant parts of the environment (horizontal edge between the floor
and furniture) and perform collision-free navigation. In a fourth set of experiments,
we apply this methodology to an all-terrain robot with a static, but large, field of view
that must navigate in a rugged terrain. Here again, the system becomes sensitive to a
set of simple visual features that are maintained within the retina by the active vision
mechanisms.
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7 Evolution of Learning

Another interesting direction in Evolutionary Robotics is the evolution of learning. In
a broad sense, learning is the ability to adapt during lifetime and we know that most
living organisms with a nervous system display some type of adaptation during life.
The ability to adapt quickly is crucial for autonomous robots that operate in dynamic
and partially unpredictable environments, but the learning systems developed so far
have many constraints that make them hardly applicable to robots interacting with an
environment without human intervention. Of course, evolution is also a form of ad-
aptation, but modifications occur only over several generations, and that may require
too long time for a robotic system (for a comparative discussion of lifelong learning
and evolution, see [27]). In order to compensate for the problems of both approaches,
we decided to genetically encode and evolve the mechanisms of neural adaptation
[11]. The idea was to exploit evolution to find good combinations of learning struc-
tures, rather than static controllers, and to evolve learning structures that without the
constraints of off-the-shelf learning algorithms. The artificial chromosomes encoded a
set of rules that were used to change the synaptic connections among the neurons
while the robot moved in the environment. The results were very interesting.

A Khepera robot equipped with a vision system was put in an arena with a light
bulb and a light switch (figure 7). The light switch is marked by a black stripe painted
on the wall. The fitness is given by the amount of time spent by the robot under the
light bulb when the light is on. Initially the light is off. Therefore, the robot must first
go towards the black stripe to switch the light on (notice that the fitness function does
not explicitly encourage this behaviour). The black and grey areas on the floor are
used by the computer to detect through a sensor positioned under the robot when to
switch the light on and when to accumulate fitness points, but this information is not
given to the evolutionary controller. Evolved robot learned during their lifetime the
sequence of behaviours necessary to increase their fitness. These included: wall
avoidance, movement towards the stripe, movement towards the light, and resting un-
der the light.

Not only the evolution of learning rules resulted in more complex skills, such as
the ability to solve sequential tasks that simple insects cannot solve, but also the num-
ber of generations required was much smaller. However, the most important result
was that evolved robots were capable of adapting during their lifetime to several types
of environmental change that were never seen during the evolutionary process, such
as different light conditions, environmental layouts, end even a different robotic body.
Very recently, Akio Ishiguro and his team at the University of Nagoya used a similar
approach for a simulated humanoid robot and showed that the evolved nervous sys-
tem was capable of adapting the walking style to different terrain conditions that were
never presented during evolution [13]. The learning abilities that these evolved robots
display are still very simple, but current research is aimed at understanding under
which conditions more complex learning skills could evolve in autonomous evolu-
tionary robots.
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Fig. 7. Left: A Khepera robot with a vision system is positioned in an arena with a light bulb
and a light switch (black stripe on the wall). At the beginning of the robot life, the light bulb is
off. The robot must develop from random synaptic connection using genetically determined
learning rules how to switch the light on and stay under the light bulb. Right: Trajectory of an
evolved robot with enabled synaptic adaptation.

8 Evolvable Hardware

In the experiment described so far, the evolutionary process operated on the features
of the software that controlled the robot (in most cases, in the form of an artificial
neural network). The distinction between software and hardware is quite arbitrary and
in fact one could build a variety of electronic circuits that display interesting behav-
iours without any software. A few years ago, some researchers realised that the meth-
ods used by electronic engineers to build circuits represent only a minor part of all
possible circuits that could be built out of a given number of components. Further-
more, electronic engineers tend to avoid circuits that display complex and highly non-
linear dynamics, and more in general those which are hard-to-predict, which may be
just the type of circuits that a behavioural machine requires. Adrian Thompson at the
University of Sussex suggested the evolution of electronic circuits without imposing
any design constraints [35]. Thompson used a type of electronic circuit, known as
Field Programmable Gate Array (FPGA), whose internal wiring can be entirely modi-
fied in a few nanoseconds. Since the circuit configuration is a chain of 0’s and 1’s, he
used this chain as the chromosome of the circuit and let it evolve for a variety of
tasks, such as sound discrimination and even robot control. Some evolved circuits
used 100 times less components than circuits conceived for similar tasks with con-
ventional electronic design, and displayed novel types of wiring. Interestingly,
evolved circuits were sensitive to environmental features, such as temperature, which
is usually a drawback in electronic design practice, but is a common feature of all
living organisms.

The field of Evolutionary Electronics was born and these days several researchers
around the world use artificial evolution to discover new types of circuits or let cir-
cuits evolve to new operating conditions. For example, Adrian Stoica and his col-
leagues at NASA/JPL are designing evolvable circuits for robotics and space applica-
tion [34], while Tetsuya Higuchi, another pioneer of this field, at the Electro-
Technical Laboratory near Tokyo in Japan is already bringing to the market mobile
phones and prosthetic implants with evolvable circuits [16].
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Fig. 8. A schematic representation of the electronic tissue. Each cell of the tissue is composed
of three layers, a genotype layer to store the artificial genome of the entire tissue, a phenotype
layer to express the functionality of the cell, and an intervening mapping layer to dynamically
express the genes into functionalities according to gene expression and cell signalling proc-
esses. In addition, each cell of the circuit has input and output connections with the environ-
ment. Cells can be dynamically added or removed from the circuit at runtime. A prototype of
the electronic tissue has been added on top of the Khepera robot and evolved to generate tissues
of spiking neural controllers.

At EPFL, in collaboration with other European partners [36], we are pushing even
further the analogy between silicon devices and biological cells in the attempt to cre-
ate an electronic tissue capable of evolution, self-organisation, and self-repair
(http://www.poetictissue.org). The electronic tissue is multi-cellular surface com-
posed of several tiny re-configurable electronic circuits that can be attached or de-
tached while the tissue is in operation. Similarly to a biological cell, each electronic
cell is composed of three layers (figure 8). The genotype layer stores the artificial ge-
nome of the entire tissue. The phenotype layer expresses the functionality of the cell
such as a neuron, a hair cell, a photoreceptor, a motor cell, etc. Finally, the mapping
layer regulates the gene expression mechanisms depending on inter-cellular electronic
signals. In addition, each electronic cell or group of cells can be attached to a sensor
(a phototransistor, a whisker, a microphone, etc.) and/or to an actuator (a servomotor
or an artificial muscle). An artificial genome is sent to a mother cell that sends it to all
available cells, mimicking a process of cell duplication. As a cell receives a genome, a
process of gene expression starts. The gene expression mechanism is affected by in-
tercellular signals so that the functional property expressed by a cell partially depends
on the type and intensity of received signals, on its position in the tissue, on the time
of genome reception, and on environmental stimulation. For example, cells connected
to photoreceptors may have a higher likelihood to process photons. Early prototypes
of the system have been interfaced to a robot by connecting the sensors and actuators
to cells. The tissue has been subjected to an evolutionary process where different ge-
nomes are sequentially tested, reproduced, crossed over and mutated until the robot
displayed suitable navigation in a maze [32].
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9 Evolutionary Morphologies

In the early experiments on evolution of navigation and obstacle avoidance (figure 1),
the neural circuits adapted over generations to the distribution of sensors of the
Khepera robot. However, in Nature also the body shape and sensory-motor configu-
ration is subjected to an evolutionary process. Therefore, one may imagine a situation
where the sensor distribution of the robot must adapt to a fixed and relatively simple
neural circuit. The team of Rolf Pfeifer at the A.l. laboratory in Zurich developed
Eyebot, a robot with an evolvable eye configuration, to study the interaction between
morphology and computation for autonomous robots [20]. The vision system of Eye-
bot is similar to that of houseflies and is composed of several directional light recep-
tors whose angle can be adjusted by motors. The authors evolved the relative position
of the light sensors while using a simple and fixed neural circuit in a situation where
the robot was asked to estimate distance from an obstacle while moving along a track.
The experimental results confirmed the theoretical predictions: The evolved distribu-
tion of the light receptors displayed higher density of receptors toward in the frontal
direction than on the sides of the robot. The messages of this experiment are quite im-
portant: on the one hand the body shape plays an important role in the behaviour of an
autonomous system and should be co-evolved with other aspects of the robot; on the
other hand, computational complexity can be traded with a morphology adapted to the
environment.

Back in 1997, when quadruped robots where still an affair of research laboratories,
we used a co-evolutionary approach to investigate the balance between morphology
and control of a four leg robot [12] (figure 9). More specifically, we were interested in
finding a good ratio between leg and body size as well as minimise the number of
motorised degrees of freedom provided by a behaviour-based control system with a
number of evolvable parameters. We carried out co-evolution of body and control in
3D simulations, but constrained the genetic representation of the robot morphology to
a number of primitives that could be built using available technology. Evolved robots
were capable of walking forward and turning very smoothly to avoid obstacles using
an infrared sensor positioned in front of the robot. These robots used rotating joints
only on the front legs. We then built a physical robot according to the dimensions
found by the co-evolutionary process (figure 9, right) and downloaded the evolved
control system for autonomous navigation. The physical robot displayed the same
walking behaviour shown in simulation, although it had a noticeable trembling (which
looked as if it was affected by the mad-cow disease) caused by the differences be-
tween simulations and physical reality. Since our purpose was to study the interac-
tions between body and control co-evolution, we did not attempt to improve the
walking behaviour of the physical robot. However, a possible strategy would be to
evolve the learning rules (as described in a section above) and have the “newborn”
physical robot adapt online to its own physical characteristics. Also adding some
noise to the sensors and actuator while simulating the robot may help bridge the gap
to reality [23] by avoiding that the controller over-specialises to the simulation.

Co-evolution of the body and controller has also been applied to biped robots [4].
The results showed better walking characteristics than when only the controller was
evolved. The idea of co-evolving the body and the neural circuit of autonomous ro-
bots had already been investigated in simulations by Karl Sims [33], but only recently
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Fig. 9. An evolved 4 legged robot. The control system of the robot, its body size, and length of
legs have been evolved in 3D simulations (left). The physical robot (right) has been built ac-
cording to the evolved genetic specifications. The evolved control system is transferred from
the simulated to the physical robot. Such evolved robot can walk and avoid obstacles. The robot
is approximately 20 cm long and less than 1kg without batteries. Leg control performed by a set
of HC11 microcontrollers.

this has been achieved in hardware. Jordan Pollack and his team at Brandeis Univer-
sity have co-evolved the body shape and the neurons controlling the motors of robots
composed of variable-length sticks whose fitness criterion is to move forward as far
as possible [21]. The chromosomes of these robots include specifications for a 3D
printer that builds the bodies out of thermoplastic material. These bodies are then fit-
ted with motors and let free to move while their fitness is measured. Artificial evolu-
tion generated quite innovative body shapes that resemble biological morphologies
such as those of fishes.

10 A Look Ahead

Over the last 10 years, the role of embodiment and behavioural interaction has been
increasingly recognised as a cornerstone of natural and artificial intelligence. New re-
search initiatives in information technologies, neuroscience, and cognitive science
sponsored by the European Commission, U.S. National Science Foundation, and a
number of national programs explicitly emphasise these two aspects.

Many more examples of evolutionary robots exhibiting intelligent behaviours are
available out there, too many to be covered in this short document. However, we are
just scratching the surface of a radically new way of understanding how intelligent
life emerged on this planet and could evolve in machines. There are a number of con-
ceptual and technological challenges ahead. For example, evolution does not auto-
matically lead to intelligent behaviours. A lot of prior knowledge and experience is
still required to select appropriate parameters, such as the genetic encoding, the neural
network architecture, the mapping of sensors and actuator to the network or even the
fitness function. Developing better methodologies to select those parameters is an im-
portant aspect that needs to be tackled for evolving more complex systems. Also, we
are facing what is called the “bootstrap problem”. If the environment or the fitness
function is too harsh for the evolving individual during the initial generations (so that
all the individuals of the first generation have zero fitness), evolution cannot select
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good individuals and make any progress. A possible solution (and by far not the only
one) is to start with environments and fitness functions that become increasingly more
complex over time. However, this means that we must put more effort in developing
methods for performing incremental evolution that, to some extent, preserve and
capitalise upon previously discovered solutions. In turn, this implies that we should
understand what are suitable primitives and genetic encoding upon which artificial
evolution can generate more complex structures. A key aspect will most likely be the
emergence of modular and hierarchical structures through mechanisms of genetic
regulatory networks, cell differentiation, and inter-cellular signalling. Another chal-
lenge is hardware technology. Despite the encouraging results obtained in the area of
evolvable hardware, many of us feel that we should drastically reconsider the hard-
ware upon which artificial evolution operates. This means that maybe we should put
more effort in self-assembling materials that give less constraints to the evolving sys-
tem, facilitate the evolutionary process, and may eventually lead to truly self-
reproducing machines.
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Abstract. We have studied modular self-reconfigurable robots that are capable
of changing their overall shape and functionality by automatic recombination
of homogenous robotic modules. Our latest model, called Modular Transformer
(M-TRAN), is able to metamorphose into various 3-D configurations and gen-
erate robotic motions that are suitable to its configuration. This paper presents a
review of hardware design of the module, some developed software for self-
reconfiguration and motion generation, and some experimental results.

1 Introduction

Acrtificial systems have become increasingly complicated, engendering rapidly in-
creasing design, production, and maintenance costs. In addition, the surrounding
environment of such devices is becoming more complicated, varied and unpredict-
able. Therefore, the designers these devices cannot determine a complete set of desir-
able functions a priori. We believe that “emergent functionality” is an important
concept to resolve this issue. Namely, devices that are able to produce necessary
functions according to a situation are capable of coping with it. To produce, or
“emerge”, such functionality, a system must incorporate some mechanism that allows
the independent change of its own functions. Physical reconfiguration of the device’s
hardware is necessary: so-called “self-reconfiguration.”

We have studied modular self-reconfigurable robots that are capable of changing
their overall shape and functionality through the recombination of homogenous ro-
botic modules. The most distinguished property of self-reconfigurable robots is that
both assembly and repair are performed autonomously without any external help.
Self-reconfigurable robots have robotic modules that can change their local connec-
tivity to form a specific shape (self-assembly) through cooperation of many modules
using inter-module communication. Thereby, the whole robot can generate robotic

F. lida et al. (Eds.): Embodied Artificial Intelligence, LNAI 3139, pp. 312-330, 2004.
© Springer-Verlag Berlin Heidelberg 2004
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motion through the cooperation of all modules. Module homogeneity allows self-
repair through replacement of faulty modules with spares.

Numerous types of self-reconfigurable robots have been proposed. Among them,
M-TRAN (modular transformer), developed by our group, is a superior realization of
this kind of robot. This paper specifically addresses several research topics related to
M-TRAN system hardware, software, and algorithms.

The following section reviews studies of various self-reconfigurable robots. Sec-
tion 3 explains M-TRAN hardware. Section 4 describes issues of self-reconfiguration
planning between different shapes. In Section 5, a motion generation method using a
genetic algorithm (GA) is explained. We conclude this paper in the last section.

2 Related Work

Research activities addressing self-reconfigurable robots began in the late 1980s
when Fukuda et al. proposed the “Cellular Robot” concept [1]. Subsequently, great
efforts have been made to realize two-dimensionally self-reconfigurable robots [2-9].
Those studies proposed many two-dimensional hardware and various algorithms for
self-assembly and self-repair. Thereafter, the self-reconfigurable robot concept was
extended to three-dimensional (3D) robots [10-19]. Most hardware of 3D self-
reconfigurable robots are classified into two types: “lattice type” [10-15,17] and
“linear (or string or chain) type” [16,18,19]. The former corresponds to a system
where each module has several fixed directions for connection similar to that of at-
oms; groups of them form various types of crystals. The resultant structure is static.
Consequently, it is difficult to generate a group motion on the system. In contrast, the
latter is fundamentally a robot with many joint modules that can easily generate vari-
ous robotic motions similarly to a snake or caterpillar. However, self-reconfiguration
is difficult for the latter type because it requires complicated control for reconnection.

3 Hardwareof M-TRAN

We recently developed a novel self-reconfigurable system called a modular trans-
former (M-TRAN). It has both lattice and linear type features [20-26, 31]. The mod-
ule has a simple bipartite composition. This module is suitable for forming various
robotic shapes through self-reconfiguration. This section explains the M-TRAN mod-
ule hardware and its control system.

The M-TRAN module comprises two semi-cubic blocks and a link (Fig. 1). It has
two rotational actuation axes and six connection surfaces. Each rotational angle
ranges £90°. When all angles are restricted to 0° or £90°, all cubic blocks are placed
on a regular cubic grid system. By this property, precise positioning between two
neighbor modules is unnecessary for self-reconfiguration as long as the angles are
multiples of 90°. Once a specific structure is made by self-reconfiguration, each rota-
tional angle can be controlled freely to form robotic motion as a whole.
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Fig. 1. M-TRAN Il modules. This picture shows three inter-connecting modules. A module
consists of two semi-cylindrical parts (60 x 60 x 60 mm) connected by a link. Each module
weighs about 400 g. Two parallel rotation axes are driven by servomotors in the link. Each part
has three magnetic connection faces equipped with electrical connection channels for inter-
module communication. Compared to the first generation, it has smaller size, three more proc-
essors (one neuron chip and three PICs), and more powerful and faster operation.

Figures 1 and 2 show the second generation of the M-TRAN system called M-
TRAN II. Its actuators and connections are sufficiently strong to lift one or two other
modules under gravity. Both a reliable connection for self-reconfiguration and suffi-
cient actuation power for robotic motion are realized. Wireless, stand-alone operation
is possible using a battery in each module.

The module connection mechanism is designed based on the Internally Balanced
Magnetic Unit (IBMU) principle proposed by Hirose et al. [27]. We adopt spring
actuators made of shape memory alloy (SMA) to release the magnetic connection
(Fig. 3).

The M-TRAN Il control system contains two layers of multi-CPU system (Fig. 4).
The upper layer is a computer network of modules; the lower layer is a microcontrol-
ler system inside each module.

The upper layer contains the main-CPUs (Neuron chip; Echelon Corp.) connected
by a two-wired network bus (IEEE RS-485). The host PC is also identified as a node
in this network when the tethered attachment is connected to a module. This network
transfers programs and data to each module from the host PC. After transfer, the
tether can be removed. Then the modules are activated by a transferred command that
is received by one module via a radio communication channel. The communication
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Fig. 2. M-TRAN Il module interior view. The left part is a “passive” block and the right is
“active.” Each block has three connection surfaces. When the passive and the active blocks
contact each other, they automatically connect by permanent magnets. The active one has a
mechanism for releasing this connection (its principle described below). Connecting plates in
the active block have several retractable electrodes for inter-module communication. A power
supply circuit, a main CPU board, and a battery are inside the passive block. Power supply by a
single battery is sufficient to drive two motors and for releasing one connection in a module.
The link part contains two geared motors for rotation and potentiometers to measure rotation
angles. The link part has a motor-driver circuit that realizes PID positioning control.
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Attach -
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Magnet (N pole)
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Detach B QHsatmg SMAs
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Electrode
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Fig. 3. Connection mechanism. When passive and active blocks are closely placed, the con-
necting plate is moved by magnetic force; thereby, the magnets of the two blocks make contact
(a to b). Because the magnetic force and repulsive force by nonlinear springs are internally
balanced inside the casing, a firm connection is achieved without reducing the force of magnets
(b). When the SMA coils are heated, they generate sufficient force to push the connection plate
down; eventually, the magnets are detached and connection force between two blocks becomes
very small (c).
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Fig. 4. M-TRAN Il control system. The upper layer is a computer network of modules and the
lower layer is a microcontroller system inside each module. The upper layer consists of the
main CPUs (Echelon Corp.) connected by a network bus (RS-485). The host PC is also a node
in this network with an interface board when the tethered attachment is connected to one mod-
ule. This network allows transfer of programs and data to each module from the host PC.

protocol of the upper layer is the LON protocol, which is provided as firmware on the
Neuron chip. All modules in this network, including the host PC, are equivalent in
their priority. In these experiments, one module with the lowest ID number is selected
as a master.

Inside each module, the main CPU (Neuron chip) and three microcontrollers
(PIC16F873 and F877) compose the lower layer. The main CPU works as a master
and sends commands to the others. The PIC in the link part controls two motors by
PID control and the PIC in the active block controls the light bulbs (heater for SMAS)
to release the connections. The PIC in the passive brick is for detection of a local
connection and for local communication with connected modules. These four con-
trollers communicate using asynchronous serial communication in the module.

4 Sdf-Reconfiguration Planning

4.1 Self-Reconfiguration Method

In the M-TRAN system, self-reconfiguration is achieved by repeating basic opera-
tions such as detaching a surface from the neighbor, rotating a semi-cylindrical box,
and reconnecting the surface to another neighbor.

Figure 5 illustrates simplified self-reconfiguration schemes of M-TRAN system. A
module on the floor tiled with passive and active connection surfaces, can rotate
around the horizontal axis (a), or rotate around the vertical axis (b). The former is
called “forward roll mode;” the latter is called “pivot translation mode.” Although a
single M-TRAN module does not have sufficient degrees of freedom (DOFs) to
switch from one mode to another, it is possible using a partner module (c). Such
switching is called mode conversion. The actual reconfiguration process is not as
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(c) Conversion.

Fig. 5. Self-reconfiguration schemes. (a) Forward roll: The module travels on a line by rotating
around the x-axis. Although it cannot change the direction of the line, the module can change
the vertical level by climbing over another module. (b) Pivot translation: The module traverses
the plane by rotation around the z-axis. The module can head to any direction but cannot
change its vertical level in this mode. (c) Mode conversion: A module attached with an arrow
is lifted up by a module behind (converter module) and placed back at the same position but in
a different posture.

simple as shown in this illustration. We must combine these actions to design a self-
reconfiguration path to a desirable configuration.

4.2 Difficultiesin Self-Reconfiguration Planning

The central problem in self-reconfiguration planning is to find a general algorithm
that can verify whether two arbitrary configurations A and B are reachable from one
to the other. If they are it calculates an appropriate reconfiguration path between them
which has the smallest transformation cost. However, such calculation is difficult
even for two-dimensional systems [28,29]. Such difficulty has its origin in the nature
of the many DOF searching problems of modular architecture.

The most important issue in designing a self-reconfiguration planner is defining
the metric that indicates the difference between two configurations [30]. For most
two-dimensional lattice systems and for isotropic three-dimensional modules, there is
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Fig. 6. Self-reconfiguration design interface. Left panel: motion command input, center panel:
motion command sequence list, right panel: simulation result display.

a good correspondence between the lattice distance. The transformation cost is evalu-
ated as the number of necessary motion steps. Therefore, the lattice distance can be
used as a metric for those isotropic systems; it gives planning algorithms at reason-
able cost. M-TRAN has less symmetry because of its non-isotropic shape and parallel
axes. This fact implies that the lattice metric is not good for reconfiguration planning.

Along with this problem, some generic hardware constraints must be taken into
account: (a) connectivity — all the modules must remain connected during self-
reconfiguration; (b) collision avoidance — collisions between modules must be
avoided; and (c) torque limit — one module can only lift a few modules depending on
their posture. In the M-TRAN system, we must consider different modes (pivot or
forward roll) and their mode conversion. This consideration further complicates the
problem.

We have developed two types of software to cope with such self-reconfiguration
planning complexity. The first is a motion design interface, which helps a hu-
man programmer to design a complex self-reconfiguration sequence and motion
generation through a powerful graphical interface. The second is a locomotion plan-
ner for an M-TRAN cluster, which relaxes the above difficulties by assuming some
periodic regularity of the structure.
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(a) (b)

(©) ®

(2)

Fig. 7. Sequence planned using interface software with macro commands. The interface allows
human programmers to design a complicated self-reconfiguration like this. (a) Four modules at
one end of the cluster are lifted up on the cluster. (b) They walk along the cluster to the other
end similarly to an inchworm. (c) They are placed on the floor and changed to a crawler con-
figuration (d, €). Then it cuts the loop to become a four-legged walker (f, g).
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Fig. 8. An automatically generated cluster flow by two-layer control. The super-module cluster
follows the flow that is placed by a human operator.

4.3 Sef-Reconfiguration Design Interface

A graphical interface remarkably aids users to plan reconfiguration sequences in
three-dimensional space. We have developed a self-reconfiguration design interface
for M-TRAN using the OpenGL Library. Figure 6 shows the developed interface. The
users can design any initial configuration by indicating the position and orientation of
each module using simple mouse operation. Then the interface allows users to design
a sequence of module motions in a similar interactive manner. The interface checks
the connectivity of all modules and alerts the designer if some system part is discon-
nected. Collision of modules is also checked automatically.

This interface allows users to use macro commands. Sometimes, the same short
sequence of reconfiguration is useful in many situations. Those sequences can be
registered as macros in reusable form. Users can edit a list of structured commands
including basic motion commands and structured macros. Figure 7 shows snapshots
from a complicated reconfiguration sequence that is planned using the interface soft-
ware and macros.

Another approach to reduce complexity of planning is to introduce regularities
into module clusters. The cluster comprises four-module blocks (two pivot translation
modules in two layers, in orthogonal directions). This block is regarded as a super
module or meta-module. The advantage of introducing the super-modules is that any
serial connection of the super-modules maintains connectivity of the whole cluster.
The super modules simplify the reconfiguration problem considerably.
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Fig. 9. An experiment assessing self-reconfiguration and motion generation of the M-TRAN |1
system. These photos are taken from video. The first frame is a walking configuration. It flat-
tened in the following three frames to take an “H” configuration. Then the central unit, which
serves as a manipulator, moves modules in the left side to the right (continues). Light bulbs are
turned on when the connection is detached (second frame of second row).

Fig. 9. (continued) The central manipulator module continues to carry modules from the left to
the right until all modules are stacked in one line (from first to third row). Then the stack is
untied to form a linear configuration (second frame of the fourth row). After the manipulator
modules are disconnected (second from the last); it moves as a snake. Self-reconfiguration
sequence from four-legged to snake configuration is designed manually. The walking gait of
the first four-legged configuration and the snake motion are both generated by the method
described in Section 5.
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We have developed a centralized reconfiguration planning software utilizing the
structure built by the super-modules. The planner comprises global and local plan-
ners. The global planner decides the global motion regarded as flow of the super-
modules. The flow is a trajectory in 3-D space that the super-module must follow. For
instance, a translation of the whole cluster can be realized by sending a super-block at
the tail of the cluster toward the head. The role of local planner is to decompose the
flow into precise motion commands (schemes) based on a rule database of admissible
motion for local connectivity. Figure 8 shows one example that is designed automati-
cally by this method.

We conducted a self-reconfiguration experiment using M-TRAN hardware (Fig.
9). It demonstrates M-TRAN’s reliable self-reconfiguration capability and motion
generation as a robotic system. This self-reconfiguration sequence is designed manu-
ally using the interface software. Walking motion is generated by ALPG software,
which is explained in the following section.

5 Motion Generation

In this section, we consider motion generation for the self-reconfigurable system.
Although motion generation and control have been subjects of robotics study for a
long time and numerous methods have been proposed, those models have always
assumed the predetermined dynamics of a fixed system. However, a self-
reconfigurable system can change its shape. For this reason, we developed an auto-
matic motion generator for arbitrary configuration.

5.1 Generating Locomotion Pattern by ALPG

We have built an automatic locomotion pattern generation software (ALPG) by com-
bining a dynamics simulator (Vortex; CMLabs Simulations, Inc.), a dynamics model
of a M-TRAN module, a neural oscillator which drives the modules, and a GA, which
optimizes the neural oscillator network [31].

Figure 10 shows a flow diagram of the ALPG software that obtains locomotion
patterns for various configurations. The initial configuration and system shape are
given in this method. Note that “configuration” here means topological connectivity
among the modules and that “shape” means joint angles of the modules. From this
initial condition, each module’s actuator is driven by a neural oscillator network,
which controls the frequency, phase and amplitude of each joint angle. The locomo-
tion pattern performance is evaluated using sequential dynamic simulations; the GA
optimizes the parameters for the oscillators. The best result is transferred to the M-
TRAN hardware for final evaluation.
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Fig. 10. A flow diagram of the ALPG software, which generates locomotion patterns for vari-
ous configurations.

5.2 Central Pattern Generator

We applied a neural oscillator model known as the Central Pattern Generator (CPG)
to control each module’s motion. Each neuron in this model is represented by a set of
differential equations, the basic structure of which is depicted in Fig. 11 [32-35].

Each module’s motor has its own CPG and is controlled directly by the CPG out-
put. The CPG oscillations are mutually entrained, which is caused by feedback sig-
nals from the rotation angles among connected neurons. Two kinds of entrainment
exist. Each generates a cooperative motion with the modules. One is an entrainment
among CPGs made by the CPG connection; the other is a more complicated entrain-
ment among CPGs and mechanical system (called global entrainment caused by feed-
back from each joint angle to each CPG.).

5.3 Evolutionary Computation
We implemented a GA to search an optimal oscillator network for locomotion. The

initial values of four state variables of each CPG and the connection weights among
the CPGs are evolved together using the GA. The connection weights in the neural
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Fig. 11. CPG in a module. Two actuators in a module are driven by corresponding CPGs (left).
The detailed structure of each CPG (right) is also shown. These CPGs are connected randomly
to other CPGs by the weights at the initial time.

network determine the phase differences between the CPG oscillations. After several
hundreds of generations, we succeeded in obtaining stable limit cycles. The following
explains some important settings of the evolutionary computation. The GA process
stops when the average fithess becomes constant, or the number of generations is
greater than some maximum number of generations.

(1) Gene expression

Each individual has its gene, which is a set of parameters composed of initial state of
neural oscillators and connectivity matrix (connection weights) of the CPG network.
(2) Fitness Evaluation

Locomation by each individual is evaluated individually in 15 s in simulation space
by the fitness function. That function evaluates velocity, straightness, and energy
consumption of the locomotion.

(3) Selection, crossover and mutation procedures

Each individual is evaluated and sorted by its fitness; the low fitness valued group is
eliminated first. Then, crossover operations are applied to produce new individuals to
replace the eliminated ones. Because the initial state values are represented by real-
numbers and the connection weights are represented by discrete numbers (1,0,-1), we
applied two different algorithms for crossover, Unimodal Normal Distribution Cross-
over (UNDX) for the former and the N-point crossover method for the latter.
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Fig. 12. Initial configurations given to ALPG software. All parameters in the software are
identical for every trial throughout the simulation.

5.4 Simulation and Experiment

We applied the ALPG method to various module configurations shown in Fig. 12.
Stable locomotion patterns were obtained for all the configurations using the ALPG.
By those results, experiments of locomotion were carried out in which each module
followed the joint angle trajectory by PID controller. Figure 13 shows the corre-
sponding locomotion patterns. Configuration (d) of Fig. 12 has the highest fitness
value: it is difficult to control the real hardware because such a rolling motion re-
quires additional feedback control. Other gaits worked well in the hardware experi-
ments. They also showed good relevance to simulation results. The measured fitness
of locomotion was always 20-30% less than that of the simulated one.

The time required for ALPG computation to search a feasible locomotion pattern
depends on the number of modules and the frequency of collisions in the dynamics
simulation. For example, it took about six hours using a PC with a 2.53 GHz Pentium
4 processor to evolve a stable walking pattern for the nine-module configuration.

Figure 14 illustrates the locomotive motion in phase space (coordinates are the an-
gle and angular velocity). All joint angles oscillate at a constant frequency (about 1.2
Hz), amplitude, and phase difference, indicating that the locomotion pattern is con-
verged to a stable limit cycle.
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Fig. 13. Experimental results for some configurations. The solution by ALPG is downloaded to
the hardware M-TRAN.

6 Conclusion

This paper summarized our research activities related to M-TRAN system develop-
ment. A novel design of M-TRAN system realizes both reliable self-reconfiguration
and robotic motion control. Using the improved M-TRAN Il module hardware, we
achieved high torque actuation, firm and reliable connection and detachment mecha-
nisms, high speed computation by onboard processors, inter-module communication
via network on the modules, and low energy consumption, which enables autono-
mous and tetherless operation, and so on.

Several important issues remain in the M-TRAN project. The first is hardware im-
provement intended for simpler and smaller design of module, faster computation,
higher energy efficiency, and sensor implementation for system adaptation. The sec-
ond issue is software for self-reconfiguration and motion generation. Various search
and learning methods must be tried to solve those problems. The current hardware
control system is centralized. It is not suitable to achieve self-repair. We must investi-
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Fig. 14. Obtained walking gait of configuration (a) in Fig. 12. (a) Motion in the phase space
(joint angle vs. joint angular velocity). (b) Angles of all joints.

gate a distributed control method for M-TRAN system. The last issue is the manner in
which the target configuration can be defined automatically. This issue is more gen-
eral and may apply to all self-reconfigurable systems. We must consider not only the
optimal configuration to solve this problem of target configuration definition: we
must also consider the evolution of system configuration and motion.

(Videos of M-TRAN simulations and experiments are available on WWW [37].)

Discussion

Here, we summarize discussion between the reviewers and us. We think it is helpful
for the interdisciplinary audience of this volume.

Q. The salient contribution of this work is that a real-world reconfigurable hardware
has actually been made. We also need to clarify the conceptual novelty of this
work.

A. Heretofore, no devices have been capable of reconfiguring their own physical con-
figurations in a self-contained form. M-TRAN realizes that concept on the basis of
homogenous modular architecture.

Q. What do the authors mean by “emergent functionality”’? Is the locomotion an
emergent function because of the coordination of multiple modules? Alternatively,
is the behavior an emergent function because the genetic algorithm revealed a
solution with respect to fitness?
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A. Generally speaking, when system optimization or system adaptation to the envi-
ronment is achieved as a result of some self-organization process, we call it emer-
gent functionality. Nevertheless, this is a narrow definition as long as it means op-
timization of system parameters. Although proposed methodologies for the M-
TRAN system are in this category, those methodologies offer the potential of
structural change through self-reconfiguration, which differs qualitatively from
mere parameter optimization. We built a static structure by self-reconfiguration in
the first series of research; now we have achieved locomotion by M-TRAN. We
infer that more functions will be achieved through further research on self-
reconfigurable artifacts.

Q. Why does the system proposed in this paper have a distributed controller, distrib-
uted energy, and distributed actuation? To some extent, but not always, nature
adopts this solution because of flexibility. Notwithstanding, this is achieved at the
sacrifice of efficiency.

A. In terms of efficiency, centralized architecture is usually better than distributed
architecture. However, centralized architecture always results from top-down de-
sign. This research investigated a novel design methodology using a bottom-up
approach. We believe that distributed architecture is the most feasible framework
to pursuit this line because it offers advantages in various properties: 1) flexible
functionality by module combination; 2) fault tolerance by redundancy; 3) scal-
ability on the system level; 4) fast response by local control feedback, and so on. It
is difficult to say what is the best architecture for emergent functionality. At least,
we adopt a homogeneous distributed architecture for M-TRAN. To build a sys-
tematic methodology of bottom up design, we must first investigate homogeneous
architecture completely. A study of heterogeneity should follow.

Q. The paper addresses the duration of simulation to solve a problem. In relation to
it, the authors could expand this issue a little toward problem solving in different
time-scales with reference to evolution, development, and learning.

A. Drawing an analogy between biological systems and M-TRAN, the CPG network
optimization using GA can be regarded as individual adaptation. This could be ac-
complished by another approach such as reinforcement learning. Development of a
biological system corresponds to the self-assembly of a desired robot shape for M-
TRAN. Evolution of morphology requires numerous generations and is much
slower than development and individual adaptation in biological systems. In the
present M-TRAN system, a human designer gives the target shape. As mentioned
in the Conclusion, we must consider the relation between morphology and its
functionality. We would like to emphasize that a self-reconfigurable system like
M-TRAN is a platform upon which we can investigate both individual adaptation
and morphological evolution concurrently in a single framework. In this sense, the
self-reconfigurable systems open the new possibility of artifacts beyond natural
evolution.
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